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Abstract—In this paper, we propose a simple and effective geometric model fitting method to fit and segment multi-structure data even

in the presence of severe outliers. We cast the task of geometric model fitting as a representative mode-seeking problem on

hypergraphs. Specifically, a hypergraph is first constructed, where the vertices represent model hypotheses and the hyperedges

denote data points. The hypergraph involves higher-order similarities (instead of pairwise similarities used on a simple graph), and it

can characterize complex relationships between model hypotheses and data points. In addition, we develop a hypergraph reduction

technique to remove “insignificant” vertices while retaining as many “significant” vertices as possible in the hypergraph. Based on the

simplified hypergraph, we then propose a novel mode-seeking algorithm to search for representative modes within reasonable time.

Finally, the proposed mode-seeking algorithm detects modes according to two key elements, i.e., the weighting scores of vertices and

the similarity analysis between vertices. Overall, the proposed fitting method is able to efficiently and effectively estimate the number

and the parameters of model instances in the data simultaneously. Experimental results demonstrate that the proposed method

achieves significant superiority over several state-of-the-art model fitting methods on both synthetic data and real images.

Index Terms—Geometric model fitting, hypergraph construction, mode-seeking, multi-structure data

Ç

1 INTRODUCTION

GEOMETRIC model fitting is a challenging research prob-
lem for a variety of applications in computer vision,

such as optical flow calculation, motion segmentation and
homography/fundamental matrix estimation. Given that
data usually contain outliers, the task of geometric model fit-
ting is to robustly estimate the number and the parameters of
model instances in data. A number of robust geometric
model fitting methods (e.g., [1], [2], [3], [4], [5], [6], [7], [8])
have been proposed. One of the most popular robust fitting
methods is RANSAC [2] due to its efficiency and simplic-
ity. However, RANSAC is sensitive to a threshold specified
by a user and it is originally designed to fit single-structure
data. During the past few decades, many robust model fit-
ting methods have been proposed to deal with multi-struc-
ture data, such as KF [1], PEARL [3], AKSWH [6], T-
linkage [4], SCAMS [9] and PM [7]. However, current fit-
ting methods are still far from being practical to deal with
real-world problems, due to the limitations of speed or
accuracy. In this paper, we aim to accurately detect model
instances in data within reasonable time.

Note that a hypergraph involves high-order similarities,
and some works have been proposed to deal with the model
fitting problem based on hypergraphs, e.g., [10], [11], [12],
[13]. Althoughusing a hypergraph is beneficial for amodel fit-
ting method in terms of the fitting accuracy, it also causes the
problem of high computational complexity due to complex
relationships in the hypergraph. To reduce the computational
complexity, these hypergraph based fitting methods usually
fix the degree of each hyperedge in the hypergraph to be a
small constant value. However, such a way cannot character-
ize the complex relationships between model hypotheses and
data points (for themodel fitting problem) verywell.

In this paper, we propose a simple and effective Mode-
Seeking on Hypergraphs Fitting method (MSHF) to fit and
segment multi-structure data. The proposed method (MSHF)
starts from hypergraph construction, where vertices and
hyperedges respectively correspond to model hypotheses
and data points (as shown in Fig. 1). We also develop a novel
hypergraph reduction technique to remove insignificant ver-
tices, which improves the effectiveness of the constructed
hypergraph. After that, we propose a novel mode-seeking
algorithm to search for representative modes on the hyper-
graph. Finally, MSHF simultaneously estimates the number
and the parameters of all model instances in data (according
to the detectedmodes).

The proposed MSHF method has three main advantages
over previous model fitting methods. First, the constructed
hypergraph is able to effectively characterize the complex
relationships between model hypotheses and data points,
and the size of each hyperedge in the hypergraph is data-
driven. Moreover, the hypergraph can be directly used for
geometric model fitting. That is, MSHF avoids constructing
a pairwise affinity matrix as used in [14] and [15]. Note that
the projection from a hypergraph to an induced graph

� H. Wang and Y. Yan are with the Fujian Key Laboratory of Sensing and
Computing for Smart City, School of Information Science and Engineer-
ing, Xiamen University, Xiamen, Fujian 361005, China.
E-mail: hanzi.wang@ieee.org, yanyan@xmu.edu.cn.

� G. Xiao is with the School of Aerospace Engineering, Xiamen University,
Xiamen, Fujian 361005, China. E-mail: guobaoxiao@xmu.edu.cn.

� D. Suter is with the School of Computer Science, University of Adelaide,
Adelaide, SA 5005, Australia. E-mail: dsuter@cs.adelaide.edu.au.

Manuscript received 23 Dec. 2016; revised 30 Sept. 2017; accepted 3 Feb.
2018. Date of publication 6 Feb. 2018; date of current version 13 Feb. 2019.
(Corresponding author: Hanzi Wang.)
Recommended for acceptance by H. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2018.2803173

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 3, MARCH 2019 697

0162-8828� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on April 03,2020 at 07:48:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6913-9786
https://orcid.org/0000-0002-6913-9786
https://orcid.org/0000-0002-6913-9786
https://orcid.org/0000-0002-6913-9786
https://orcid.org/0000-0002-6913-9786
mailto:
mailto:
mailto:
mailto:


usually causes information-loss (except for the methods
using the affinity tensor). Second, MSHF deals with geomet-
ric model fitting in the parameter space, which can effec-
tively handle severe unbalanced data (i.e., the numbers of
inliers belonging to different model instances in data are
significantly different). Third, MSHF performs mode seek-
ing by analyzing the weighting scores and the similarity
between vertices on a hypergraph, which shows great scal-
ability to solve the model fitting problem. We demonstrate
that MSHF is a highly robust method for geometric model
fitting by conducting extensive experimental evaluations
and comparisons in Section 5.

This paper is an extension of our previous work in [16].
We have made several significant improvements, including
a novel hypergraph reduction technique to improve the per-
formance of the original proposed method on fitting accu-
racy (Section 3.2), more theoretical analyses (Sections 2, 4.2
and 6) and more experimental justification (Section 5). We
have also used the neighboring constraint to reduce the
computational cost of MSHF (Section 3.3).

The rest of the paper is organized as follows: We provide
an overview of the related work in Section 2. We describe the
components of the proposed fitting method in Section 3 and
summarize the complete fittingmethod in Section 4.We pres-
ent the experimental results on both synthetic and real data in
Section 5. We analyze the limitations of the proposed method
in Section 6, and draw conclusions in Section 7.

2 RELATED WORK

In this section, we briefly review the related work on robust
geometric model fitting including the hypergraph-based fit-
ting methods, the mode-seeking based fitting methods, and
several other state-of-the-art fitting methods.

2.1 Hypergraph Based Fitting Methods

Recently, some hypergraph based methods, e.g., [10], [11],
[12], [13], have been proposed for robust model fitting due
to its effectiveness. For example, Liu and Yan [11] proposed
the random consensus graph (RCG) to fit multiple struc-
tures in data. Purkait et al. [13] proposed to use large hyper-
edges for face clustering and motion segmentation.

Compared with the hypergraph constructed in the previ-
ous methods (e.g., [10], [11], [12], [13]), where a hyperedge is
constrained to connect with a fixed number of vertices, the
hyperedge of hypergraphs constructed in this paper can

connect with a varying number of vertices (that is we con-
struct non-uniform hypergraphs as those in [17]). In addition,
the vertices of the hypergraph constructed in the previous
methods (e.g., [10], [11], [12], [13]) represent data points, while
the vertices of the hypergraph constructed in this paper
denote model hypotheses. Therefore, we can directly deal
with themodel fitting problem in the parameter space.

2.2 Mode-Seeking Based Fitting Methods

Mode-seeking is a simple and effective data analysis tech-
nique, and it can be extended to deal with model fitting prob-
lems (e.g., [18], [19], [20], [21]). These mode-seeking based
fitting methods select model instances by seeking the peaks of
the underlying distributions in the parameter space. Each
point in the parameter space corresponds to a model hypothe-
sis, and the detected modes represent the estimated model
instances. For example, Mean Shift [18] and its variant [19]
attempt to find peaks in the parameter space to estimate the
model instances in the data. Hough [20] proposed a robust fit-
ting method, called the Hough Transform (HT), which discre-
tizes the parameter space into bins and then votes for these
bins according to the information derived from a set of sam-
pled data points. The bins with higher votes correspond to the
estimated model instances in the data. Xu et al. [21] proposed
an extended version of HT, i.e., Randomized Hough Trans-
form (RHT). RHT uses model hypotheses to vote for the bins
in the parameter space to reduce the computational cost of HT.

The above-mentionedmode-seeking based fittingmethods
can estimate the number of model instances in data, but their
performance largely depends on the proportion of good
model hypotheses in the generated model hypotheses
derived from a set of sampled data points. As a result, these
fitting methods often wrongly estimate the number of model
instances when the proportion of good model hypotheses is
low. In contrast, the proposed mode-seeking based fitting
method alleviates this drawback. Specifically, the proposed
method can effectively seek modes by analyzing both the
weighting scores of vertices, and the similarity between the
vertices of hypergraphs. The vertices corresponding to good
model hypotheses usually show unique characteristics even
when the proportion of good model hypotheses is low. Thus,
we can select these vertices asmodes formodel fitting.

In this paper, we integrate hypergraph construction with
mode seeking for solving themodel fitting problems. The con-
structed hypergraph can effectively capture the correlation
information of model hypotheses and data points, and the
proposedmode-seekingmethod can efficiently search for rep-
resentative modes, which correspond to model instances in
data, on the hypergraph. The proposed method tightly cou-
ples both hypergraph construction and mode-seeking, by
which it yields better performance formodel fitting.

2.3 Other Related Fitting Methods

In addition to the above-mentioned robust fitting methods,
there are several other related fitting methods, such as KF [1],
J-linkage [5], T-linkage [4], SCAMS [9], PM [7], PEARL [3],
AKSWH [6], HS [22], RELRT [23] and GMD [24]. KF, J-link-
age, T-linkage and SCAMS directly deal with data points for
model fitting but they are sensitive to unbalanced data distri-
butions that are quite common in practical applications. In
addition, these methods have difficulties in dealing with the

Fig. 1. An example of hypergraph construction for line fitting. (a) The
input data including four data points and four model hypotheses (i.e.,
lines). (b) A hypergraph with four vertices fvig4i¼1 and four hyperedges

feig4i¼1. In the hypergraph, each vertex vi and each hyperedge ei denote

a model hypothesis li and a data point di in (a), respectively.
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data points near the intersection of model instances. The
computational costs of J-linkage and T-linkage are high due
to the use of the agglomerative clustering procedure. The
other robust fitting methods also have some problems. For
example, PM requires the input of the number of model
instances in data; PEARL is sensitive to the initial generated
hypotheses; AKSWHmay remove some good model hypoth-
eses corresponding to the correct model instances involving a
small number of data points, during the procedure of select-
ing significant hypotheses; HS encounters the computational
complexity problemdue to the expansion and dropping strat-
egy used; both RELRT and GMD only work for single-struc-
ture data.

The proposed method in this paper is based on the
mode-seeking technique, which is related to the clustering
technique. However, the proposed method directly searches
for the cluster centers in the parameter space, which can
avoid dealing with the data points near the intersection of
model instances. In addition, the proposed method can
achieve more accurate fitting results for multiple-structure
data within reasonable time.

3 THE METHODOLOGY

In this paper, the geometric model fitting problem is formu-
lated as a mode-seeking problem on a hypergraph. We
describe the details of the proposedMSHFmethod in this sec-
tion. Specifically, we first construct hypergraphs formodel fit-
ting in Section 3.1. Then, we develop a novel hypergraph
reduction technique to remove the “insignificant” vertices in
the hypergraph in Section 3.2. After that, we propose a novel
mode-seeking algorithm to search for representative modes
on the hypergraph in Section 3.3.

3.1 Hypergraph Construction

A hypergraph G ¼ ðV; E;WÞ consists of vertices V, hyper-
edges E, and weights W. Each vertex v is weighed by a
weighting score wðvÞ. When v 2 e, a hyperedge e is incident
with a vertex v. Then an incident matrix H, whose entry at
ðv; eÞ satisfies hðv; eÞ ¼ 1 if v 2 e and 0 otherwise, is used to
represent the relationships between vertices and hyper-
edges in the hypergraph G. For a vertex v 2 V, its degree is
defined by dðvÞ ¼

P
e2E hðv; eÞ.

In our case, a vertex in a hypergraph represents a model
hypothesis and a hyperedge denotes a data point. The
detailed procedure of hypergraph construction is described
as follows: Given a set of data points X ¼ fxigni¼1, we first
sample a set of minimal subsets from X. A minimal subset
contains the minimum number of data points, which is nec-
essary to estimate a model hypothesis (e.g., 2 for line fitting
and 4 for homography fitting). Then we generate a set of
model hypotheses using the minimal subsets and estimate
their inlier noise scales. In this paper, we use IKOSE [6] as
the inlier noise scale estimator due to its efficiency. After
that, we connect each vertex (i.e., a model hypothesis) to the
corresponding hyperedges (i.e., the inliers of the model
hypothesis). We can see that, the constructed hypergraph
effectively characterizes the relationship between model
hypotheses and data points. In this manner, we can directly
perform mode-seeking on the hypergraph for model fitting.

The constructed hypergraph usually includes a large
number of vertices, and we assign a weighting score wðvÞ to

each vertex v to measure its quality. Inspired by [6], we
employ the density estimate technique through the follow-
ing equation to compute wðvÞ (see Section 3.2 in [6])

wðvÞ ¼ 1

n

X
e2E

CðreðvÞ=bðvÞÞ
ŝðvÞbðvÞ ; (1)

where Cð�Þ is a kernel function (such as the Epanechnikov
kernel); reðvÞ is a residual measured with the Sampson dis-
tance [25] from the model hypothesis to a data point; n and
ŝðvÞ are the number of hyperedges and the inlier noise scale
of the model hypothesis, respectively, and bðvÞ is the win-
dow radius (bandwidth), which is estimated using [26]

bðvÞ ¼
243

R 1
�1 Cð�Þ2d�

35n
R 1
�1 �

2Cð�Þd�

" #0:2

ŝðvÞ: (2)

Since the good model hypotheses corresponding to the
model instances in the data have significantly more inliers
with smaller absolute residuals than the bad model hypoth-
eses, the weighting scores of the vertices corresponding to
the good model hypotheses should be higher than those of
the vertices corresponding to the bad model hypotheses.
However, weighing a vertex based on residuals may not be
robust to outliers, especially for extreme outliers. To weaken
the influence of outliers, we only consider the residuals of
the corresponding inliers belonging to the model hypothe-
ses (note that [6] considers the residuals of all data points,
which is less effective and robust). Thus, based on a hyper-
graph G, Eq. (1) can be reformulated as

wðvÞ ¼ 1

dðvÞ
X
e2E

hðv; eÞCðreðvÞ=bðvÞÞ
ŝðvÞbðvÞ ; (3)

where dðvÞ is the degree of a vertex v and hðv; eÞ is an entry
of the incident matrix H corresponding to the hypergraph
G. Recall that hðv; eÞ will be assigned 0 if the corresponding
data point is not an inlier belonging to the corresponding
model hypothesis. Thus, compared with Eq. (1), the weight-
ing score computed by Eq. (3) is not greatly influenced by
outliers.

3.2 Hypergraph Reduction

In [16], we originally use a weight-aware sampling tech-
nique (WAS) to sample vertices according to their weight-
ing scores to avoid ineffective mode-seeking results. The
main task of WAS is to remove a few insignificant vertices
corresponding to bad model hypotheses with low weight-
ing scores. However, although WAS can effectively remove
some bad model hypotheses, some good model hypotheses
may be also discarded in some cases, which will affect the
accuracy of the mode-seeking algorithm (see Section 3.3).
Furthermore, WAS has a low probability to sample some
bad model hypotheses. This will make the whole algo-
rithm unstable. Therefore, we propose a new hypergraph
reduction technique in this paper, which is inspired by
the information theoretic approach proposed in [27], to
remove insignificant vertices corresponding to bad model
hypotheses with low weighting scores while preserving
most of the significant vertices corresponding to good
model hypotheses.
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Given a hypergraph G with vertices V ¼ fv1; v2; . . . ; vmg
and the associated weighting scores W ¼ fw1; w2; . . . ; wmg,
wherem is the number of vertices, i.e., the number of the gen-
erated model hypotheses, let qi ¼ meanðWÞ � wi denote the
gap between the average weighting score of vertices and the
weight of vi. Thus, as in [27], we can compute the prior proba-
bility pi of the vertex vi by normalizing qi as follows:

pi ¼
qiPm

j¼1
qj
; if qi > 0;

� ; otherwise;

(
(4)

where � denotes a small positive value to avoid zero divi-
sion. Then we can obtain the entropy of the prior probabil-
ity, which is used as an adaptive threshold to select
significant vertices

E ¼ �
Xm
i¼1

pi log pi: (5)

Finally, we retain the vertices with higher quantities of
information than the entropy E, and the retained vertices V
are defined as

V ¼ fvij � log pi > Eg: (6)

Note that [6] also applies the information theoretic
approach to select significant hypotheses. However, in [6],
the gap between the weight of a model hypothesis and the
maximum weight is used to select significant hypotheses.
However, such a strategy may remove not only many bad
model hypotheses but also some good model hypotheses
having less number of inliers. In contrast, the proposed
method removes less significant model hypotheses than [6]
and retains more good ones. Thus, it is more effective than
the method used in [6] for removing insignificant model
hypotheses while preserving significant ones.

3.3 The Mode-Seeking Algorithm

Given a hypergraph G�, we aim to seek modes by searching
for the authority peaks that correspond to model instances
in data. The “authority peaks” in a hypergraph can be
defined as follows.

Definition 1. Authority peaks are the vertices that have the local
maximum values of weighting scores in the hypergraph.

The vertices that have the local maximum values of
weighting scores correspond to the modes in a hypergraph.
Here, “local” refers to the neighbors of a vertex in a hyper-
graph. This definition is consistent with the conventional con-
cept of modes, which are defined as the significant peaks of
the density distribution in the parameter space [18], [21], [28].

Inspired by [29], where each cluster center is character-
ized by two attributes (i.e., a higher local density than its
neighbors and a relatively large distance from any point
that has higher densities to the cluster center itself), we
search for the authority peaks, which are the vertices that
are surrounded by their neighbors with the lower local
weighting scores, and are significantly dissimilar to any
other vertices that have higher local weighting scores.

To describe the relationships between two vertices in a
hypergraph, we propose an effective similarity measure
based on the Tanimoto distance [30] (referred to as

T-distance), which is able to effectively measure the degree
of overlap between two hyperedge sets connected by the
two vertices. Given two vertices vp and vq, their T-distance
is computed as

T ðCCvp ; CCvqÞ ¼ 1�
hCCvp ; CCvq i

kCCvpk
2 þ kCCvqk

2 � hCCvp ; CCvqi
; (7)

where h�; �i and k � k indicate the standard inner product and
the corresponding induced norm, respectively. CCvp and CCvq
denote the preference function of vp and vq to hyperedges E,
respectively.

We define the preference function (see Section 2.1 in [4])
of a vertex vp to a hyperedge e 2 E as

Cevp ¼
expf� reðvpÞ

ŝðvpÞ g; if reðvpÞ � EŝðvpÞ;
0 ; otherwise;

(
(8)

where E is a threshold (the value of E is usually set to 2.5 to
include 98 percent inliers of a Gaussian distribution). The
preference function is used to compute a rank of a vertex that
indicates the degree of preference of the vertex to a hyper-
edge, where the most preferred hyperedge is ranked in the
top (a high value), and the least preferred hyperedge is
ranked in the last (a low value). Note that the preference func-
tion of each vertex can be effectively expressed by Eq. (8),
which takes advantages of the information of residuals of
data points with regard tomodel hypotheses. That is, a vertex
prefers to hyperedges that correspond to a data point with a
small absolute residual.

Considering a hypergraph, we rewrite Eq. (8) for the
preference function of each vertex vp to hyperedges E as

CCvp ¼ hðvp; eÞexp � reðvpÞ
ŝðvpÞ

� �
; 8e 2 E: (9)

Although [4] also employs the T-distance as a similarity
measure, the T-distance defined in this paper has significant
differences: 1) We define the preference function of a vertex
(i.e., a model hypothesis) towards a hyperedge set (i.e., the
inliers), while the authors in [4] define the preference function
of a data point towardsmodel hypotheses. Thus, the similarity
betweenmodel hypotheses can bemore effectively discovered
by the corresponding preference functions in our case. 2) The
T-distance used in the proposed method is calculated without
using iterative processes. In contrast, the T-distance in [4] is
iteratively calculated until an agglomerative clustering algo-
rithm segments all data points. Therefore, the T-distance used
in this paper ismuchmore efficient than that in [4].

Based on the similarity measure and weighting scores,
we then compute the Minimum T-Distance (MTD) hvimin of a
vertex vi in G� as follows:

h
vi
min ¼ min

vj2VðviÞ
fT ðCCvi ; CCvjÞg; (10)

where

VðviÞ ¼ fvj
��wðvjÞ > wðviÞ; vj 2 NðviÞg; (11)

NðviÞ ¼ fvj
�� P

e2E hðvi; eÞhðvj; eÞP
e2Eðhðvi; eÞ þ hðvj; eÞÞ

> �; vj 2 Vg: (12)
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That is, VðviÞ contains all the vertices that have higher
weighting scores than wðviÞ in the neighbors of vi. NðviÞ

contains the neighbors of vi in G�.

P
e2E hðvi;eÞhðvj;eÞP

e2Eðhðvi;eÞþhðvj;eÞÞ
denotes

the ratio of the common hyperedges connected by two verti-

ces (vi and vj). We fix � ¼ 0:8, which means that two vertices

share at least 80 percent of common hyperedges in a hyper-

graph. For the vertex vmax with the highest weighting score,

we set hvmax
min ¼ maxfT ðCCvmax ; CCviÞgvi2NðvmaxÞ.

Note that a vertex with the local maximum value of
weighting score, usually has a larger MTD value than the
other vertices in G�. Therefore, we propose to seek modes
by searching for the authority peaks, i.e., the vertices with
significantly large MTD values.

4 THE COMPLETE METHOD AND ANALYSIS

Based on the components described in the previous section,
we present the complete fitting method in Section 4.1. We
also analyze how MSHF is able to perform well for the
model fitting problem in Section 4.2.

4.1 The Complete Method

We summarize the proposed Mode-Seeking on Hyper-
graphs Fitting method in Algorithm 1. The proposed MSHF
seeks modes by directly searching for authority peaks (i.e.,
representative modes) without requiring iterative processes.
As a result, the number and the parameters of model instan-
ces can be simultaneously derived from the detected modes.

The computational complexity of MSHF is mainly
governed by Step 3 of the algorithm for computing the
T-distance between pairs of vertices (here, we do not con-
sider the time for generating model hypotheses since we
focus on model selection for model fitting). The other steps
inMSHF takemuch less time than Step 3. For Step 3, the com-
plexity of computing the neighbors of each vertex and the T-
distance between all pairs of vertices are OðM logMÞ and
OðMM 0Þ, respectively. Here, M is the number of vertices in
G� (M is empirically about 15% � 30% of the total number of
vertices inG), andM 0 ð> > logMÞ is the average number of
the neighbors of vertices inG. Therefore, the total complexity
ofMSHF approximately amounts toOðMM 0Þ.

4.2 How Does the Proposed Method Find
Representative Modes on Hypergraphs

MSHF includes three main parts: hypergraph construction,
hypergraph reduction and mode-seeking. MSHF tightly
combines these three parts, by which it can effectively
search for representative modes on hypergraphs for model
fitting.

Algorithm 1. The Mode-Seeking on Hypergraphs Fitting
(MSHF) Method for Geometric Model Fitting

Input: Data pointsX, theK value for IKOSE
1: Construct a hypergraph G and compute the weighting

score for each vertex (described in Section 3.1).
2: Use the information theoretic approach for hypergraph

reduction and generate a new hypergraph G� (described in
Section 3.2).

3: Compute the minimum T-distance hvmin for each vertex v of
G� by Eq. (10).

4: Sort the vertices in G� according to their MTD values
satisfying h

v1
min � h

v2
min � � � �.

5: Find the vertex vi whose MTD value (hvimin) has the largest
drop from h

vi
min to h

viþ1
min and reject the vertices whose values

of hvmin are smaller than h
vi
min.

6: Derive the inliers/outliers dichotomy from the hypergraph
G� and the remaining vertices (modes).

Output: The modes (model instances) and the hyperedges
(inliers) connected by the modes.

For the hypergraph construction, we construct a non-
uniform hypergraph to represent the relationships between
model hypotheses and data points. As mentioned in [13],
we argue that using larger hyperedges is more effective for
model fitting. In Fig. 2, we show some results obtained by
NCut [31] based on several uniform hypergraphs with dif-
ferent degrees and one non-uniform hypergraph con-
structed by the proposed MSHF method for line fitting.
From the results, we can see that NCut achieves better accu-
racy based on the hypergraphs with larger degrees than
that based on the hypergraphs with smaller degrees. How-
ever, how large to set the size of the hyperedges is still an
unsolved problem and unaddressed in those most works.
Recall that the proposed hypergraph construction can adap-
tively estimate the degree of each hyperedge. It is worth
pointing out that, NCut tends to find a balanced cut, and it
cannot effectively deal with unbalanced data.

MSHF searches for representative modes on hyper-
graphs which shares the similar idea of detecting cluster
centers in [29]. Specifically, [29] computes the density of
each data point and the minimum T-distance between the
data point and any other data point with higher density, to
detect cluster centers. Similarly, MSHF computes the
weighting score wðvÞ of each vertex in a hypergraph and the
minimum T-distance hvmin between the vertex and its neigh-
bors with higher weighting scores. We show an example of
mode-seeking on hypergraphs for line fitting on the “star5”
data in Fig. 3. We show the plot of hvmin with respect to the
weighting scores of vertices in non-decreasing order in
Fig. 3b, and this representation is called the decision graph.

Fig. 2. Some results obtained by NCut based on different hypergraphs for line fitting. (a) The input data. The data points with blue color are outliers,
and the other data points with the same color belong to the inliers of the same model instance. (b) to (e) The results obtained by NCut based on the
uniform hypergraphs with three, six, nine and twelve degrees, respectively. (f) The results obtained by NCut based on the proposed non-uniform
hypergraph.
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MSHF can find the representative modes according to the
decision graph, and then estimate the model instances in
the data (as shown in Fig. 3c).

In [29], cluster centers can be intuitively determined by
the corresponding decision graph. However, it is nontrivial
to detect cluster centers in our case, since some isolated data
points also show large values of the minimum distance. For
the model fitting problem, the proposed mode-seeking algo-
rithmworks well for line fitting. This is because the distribu-
tion of model hypotheses generated for line fitting is dense
in the parameter space, and there do not exist any isolated
vertices (corresponding to bad model hypotheses with low
weighting scores) showing large MTD values. However, the
distribution of model hypotheses generated for higher-order
model fitting applications, such as homography based seg-
mentation or two-view based motion segmentation, is often
sparse, where a few isolated vertices corresponding to bad
model hypotheses may also have anomalously large MTD
values as good model hypotheses (with high weighting
scores). This problem will cause the proposed mode-seeking
algorithm to work ineffectively.

To solve the above problem, we propose to remove some
vertices corresponding to bad model hypotheses in Step 2
of Algorithm 1. Therefore, hypergraph reduction (described
in Section 3.2) is a critical step to improve the effectiveness
of the proposed MSHF algorithm. To show the importance
of hypergraph reduction on the performance of the pro-
posed mode-seeking algorithm, we evaluate the algorithm
for fitting multiple homographies based on the two con-
structed hypergraphs, i.e., G (the hypergraph without
hypergraph reduction) and G� (the hypergraph with hyper-
graph reduction), as shown in Fig. 4. We show the obtained
decision graphs in Figs. 4a and 4b, which respectively corre-
spond to G and G�. We can see that the proposed mode-
seeking algorithm based on G has difficulty in distinguish-
ing the three significant model hypotheses according to the
MTD values. This is because a vertex corresponding to a
bad model hypothesis with a low weighting score also has a
large MTD value (as pointed by the arrow in Fig. 4a). There-
fore, for the feature points of the middle wall (shown in
cyan in Fig. 4c), there are two model instances estimated by
the proposed MSHF method based on G. In contrast, the
vertex corresponding to a bad model hypothesis is success-
fully removed by the step of hypergraph reduction, and the
proposed mode-seeking algorithm based on G� can cor-
rectly find all the three significant model hypotheses by

seeking the largest drop in the MTD values. As shown in
Figs. 4c and 4d, the segmentation results further show the
importance of hypergraph reduction for the proposed
MSHF method—leading to more accurate results.

5 EXPERIMENTS

In this section, we compare the proposed MSHF with sev-
eral state-of-the-art model fitting methods, including KF [1],
RCG [11], AKSWH [6], and T-linkage [4], on both synthetic
data and real images. We choose these representative meth-
ods because KF is a data clustering based method, RCG is a
hypergraph based method, and AKSWH is a parameter
space based method. These fitting methods are closely
related to the proposed method (recall that MSHF seeks
modes on hypergraphs and it fits multi-structure data in the
parameter space). We also choose T-linkage as a competing
method due to its good performance. Moreover, we com-
pare with our original method (MSH) in [16] to show the
improvements of the proposed MSHF. For MSHF, we test
two versions: MSHF1, which does not use the neighboring
constraint in Eq. (10) and MSHF2, which uses the neighbor-
ing constraint in Eq. (10).

To be fair, we first generate a set of model hypotheses by
using the proximity sampling [5], [33] for all the competing

Fig. 3. An example shows that MSHF fits the five lines on the “star5” data. (a) The input data. The data points with blue color are outliers, and the
other data points with the same given color belong to the inliers of the same model instance. (b) The obtained decision graph. The vertices are ranked
according to their weighting scores in non-decreasing order. The five vertices with the first five highest values of the minimum T-distance (shown in
different colors in the zoomed portion of the figure except for blue) are the sought modes. (c) The five lines corresponding to the five sought modes.

Fig. 4. Homography based segmentation on “Neem” [32]. (a) and (b) The
decision graphs obtained by the proposed mode-seeking algorithm
based on G and G�, respectively. (c) and (d) The segmentation results
obtained by the proposed MSHF method based on G and G�,
respectively.
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algorithms in each experiment. Then all the competing
methods perform model fitting based on the same set of
model hypotheses. We generate the same number of model
hypotheses as [6], i.e., there are 5,000 model hypotheses
generated for line fitting (Sections 5.1.1 and 5.2.1) and circle
fitting (Sections 5.1.2 and 5.2.2), 10,000 model hypotheses
generated for homography based segmentation (Section
5.2.3), and 20,000 model hypotheses generated for two-
view basedmotion segmentation (Section 5.2.4).

We have optimized the parameters of all the competing fit-
ting methods1 on each dataset for the best performance. For
our methods (i.e., MSH and MSHF1/MSHF2), we only
slightly adjust the value ofK for IKOSE. In most cases we fix
K ¼ 10% � n, where n is the number of input data points. In
some challenging cases (i.e., where the data do not include at
least 10 percent inliers), we adjust the value of K to obtain
good inlier noise scales. All experiments are run on MS
Windows 7 with Intel Core i7-3630 CPU 2:4 GHz and 16 GB
RAM. The fitting error is computed as follows [4], [34]:

error ¼ # mislabeled data points

# data points
	 100%: (13)

5.1 Synthetic Data

5.1.1 Line Fitting

We evaluate the performance of the seven fitting methods
on line fitting using four challenging synthetic data in the
3D space (as shown in Fig. 5). We repeat the experiment 50
times and report the standard variances, the average and
the best results of the fitting errors (in percentage) and the

average CPU time (in seconds) obtained by the competing
methods in Table 1 (we exclude the time used for sampling
and generating potential hypotheses for all the fitting meth-
ods). We also show the corresponding fitting results
obtained by all the competing methods from Figs. 5b, 5c, 5d,
5e, and 5f.

From Fig. 5 and Table 1, we can see that: (1) For the
“three lines” data, the three lines are completely separable
in the 3D space, and the seven fitting methods succeed in fit-
ting all the three lines. However, MSH and MSHF1/MSHF2
achieve the best performance on the fitting accuracy among

Fig. 5. Examples for line fitting in the 3D space. 1st to 4th rows respectively fit three, four, five and six lines. The corresponding outlier percentages are
respectively 86, 88, 89 and 90 percent. The inlier noise scale is set to 1.0 and each line includes 100 inliers. Each data includes 400 outliers. We do
not show the results of MSH/MSHF1, which are similar to those of MSHF2, due to the space limit.

TABLE 1
Quantitative Comparison Results of Line Fitting

on Four Synthetic Data

Data M1 M2 M3 M4 M5 M6 M7

Std. 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 Avg. 1.76 0.33 0.34 1.87 0.16 0.14 0.14
lines Min. 1.71 0.29 0.29 1.71 0.14 0.14 0.14

Time 13.74 0.41 1.17 155.92 0.99 1.77 1.04

Std. 3.16 2.11 1.02 4.73 0.59 0.26 0.26
4 Avg. 18.25 4.13 3.00 31.40 1.29 1.23 1.23
lines Min. 13.25 1.63 2.88 23.75 0.88 0.75 0.75

Time 17.09 0.53 1.18 210.39 1.68 2.92 2.57

Std. 3.07 7.42 5.34 4.53 0.21 0.17 0.17
5 Avg. 15.27 18.00 3.78 17.29 1.76 1.72 1.72
lines Min. 11.42 2.44 2.67 11.89 1.44 1.22 1.22

Time 20.36 0.68 1.23 274.08 1.88 2.81 2.61

Std. 3.32 5.63 2.87 3.15 0.47 0.47 0.47
6 Avg. 33.71 15.69 4.57 16.26 3.34 3.32 3.32
lines Min. 27.10 5.00 2.70 11.70 2.30 2.30 2.30

Time 25.53 0.69 1.37 326.48 2.07 3.06 2.77

(M1-KF; M2-RCG; M3-AKSWH; M4-T-linkage; M5-MSH; M6-MSHF1;
M7-MSHF2. M1-M7 in the following tables denote the same meaning.) The
best results are boldfaced.

1. For KF and T-linkage, we use the code published on the web:
http://cs.adelaide.edu.au/~tjchin/doku.php and http://www.diegm.
uniud.it/fusiello/demo/jlk/, respectively. For RCG and AKSWH, we
use the code provided by the authors.
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the seven fitting methods due to their high robustness to
outliers. (2) For the “four lines” data, the four lines inter-
sect at one point. The seven fitting methods succeed in esti-
mating the number of the lines in the data, but the data
clustering based methods (i.e., KF and T-linkage) cannot
effectively segment the data points near the intersection. In
contrast, RCG, AKSWH, MSH and MSHF1/MSHF2 cor-
rectly fit all the four lines with lower fitting errors, while
MSHF1/MSHF2 achieve the lowest fitting error. (3) For the
“five lines” data, there exist two intersections. The data
points near the intersections are not correctly segmented
by both KF and T-linkage, which causes these two methods
to obtain high fitting errors. RCG correctly fits four lines
but it wrongly fits one. This is because the dense subgraph
representing a potential structure in the data is not effec-
tively detected by RCG. In contrast, the parameter space
based methods (i.e., AKSWH, MSH and MSHF1/MSHF2)
do not directly deal with data points. AKSWH, MSH and
MSHF1/MSHF2 correctly fit all the five lines with low fit-
ting errors. (4) For the “six lines” data, RCG only correctly
fits five of the six lines. T-linkage wrongly estimates the

number of lines in the data. KF achieves the worst perfor-
mance among the five fitting methods. In contrast,
AKSWH, MSH and MSHF1/MSHF2 correctly fit the six
lines. These results on the challenging dataset further
shows the superiority of the parameter space based meth-
ods over the other competing fitting methods.

For the performance of computational time, RCG
achieves the fastest speed among the seven fitting methods,
but it cannot achieve good fitting accuracy. AKSWH, MSH
and MSHF1/MSHF2 achieve similar computational speed.
Here, the speed of these four fitting methods depends on
the number of the selected significant model hypotheses/
vertices. MSHF1/MSHF2 retain the maximum number of
significant vertices to avoid missing model instances with
less number of inliers. Thus, MSHF1/MSHF2 are slower
than AKSWH and MSH. MSHF2 is faster than MSHF1 due
to the use of the neighboring constraint. MSHF1 is faster
than KF and T-linkage for all four data (about 5:85 � 8:34
times faster than KF and about 72:05 � 106:69 times faster
than T-linkage).

We also evaluate the performance obtained by the
seven fitting methods for the data with different cardinal-
ity ratios between the inliers of each line, to show the
ability of the model fitting methods to deal with unbal-
anced data. We use the “three lines” data from Fig. 5 for
evaluation since all competing methods can successfully
estimate the three lines when the cardinality ratio is low.
We set the inlier numbers of the three lines to be the
same at the beginning, and we gradually increase the
inlier numbers of two lines while reducing the inlier
number of the third line to make the cardinality ratios
between the inliers of lines increase from 1.0 to 8.0. We
repeat each experiment 20 times and show the standard
variances and the average fitting errors in Fig. 6.

Fig. 6. The fitting errors obtained by the seven competing methods for
data with different cardinality ratios of inliers: (a) and (b) show the perfor-
mance comparison of the standard variances and the average fitting
errors for data with different inlier cardinality ratios, respectively.

Fig. 7. Examples for circle fitting in the 2D space. 1st to 4th rows respectively fit three, four, five and sixteen circles. The inlier noise scale is set to 0.5
and each circle has 100 inliers. Each data includes 400 outliers. We do not show the results of MSH/MSHF1, which are similar to those of MSHF2,
due to the space limit.
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From Fig. 6, we can see that MSHF1/MSHF2 achieve the
same results and both achieve low standard variances and
average fitting errors for the “three lines” data with differ-
ent inlier cardinality ratios. In contrast, KF, RCG and T-link-
age achieve low average fitting errors when the cardinality
ratio of inliers is smaller than 2.0, but they begin to break
down when the inlier cardinality ratios are larger than 2.0,
3.0 and 3.0, respectively. AKSWH and MSH obtain large fit-
ting errors when the inlier cardinality ratios are larger than
2.0 and 7.0, respectively. As a result, the parameter space
based methods (i.e., AKSWH, MSH and MSHF1/MSHF2)

show better performance than the other competing fitting
methods for the unbalanced data.

5.1.2 Circle Fitting

We further evaluate the performance of the seven fitting
methods on circle fitting using four challenging synthetic data
in the 2D space (see Fig. 7).We repeat the experiment 50 times
and report the standard variances, the average and the best
results of the fitting errors (in percentage) and the average
CPU time (in seconds) obtained by the seven competingmeth-
ods, in Table 2 (we exclude the time used for sampling and
generating potential hypotheses for all the fitting methods).
We also show the corresponding fitting results obtained by all
the competingmethods fromFigs. 7b, 7c, 7d, 7e, and 7f.

From Fig. 7 and Table 2, we can see that: (1) For the
“three circles” data, the three circles with the same diam-
eter intersect each other. All of the seven competing
methods can correctly estimate the number of circles in
the data. However, MSH and MSHF1/MSHF2 achieve the
top-three lowest average and minimal fitting errors
among all competing methods. And MSHF1/MSHF2 are
the most stable methods (achieving the lowest standard
deviation of fitting errors). This is because that MSHF1/

TABLE 2
Quantitative Comparison Results of Circle Fitting

on Four Synthetic Data

Data M1 M2 M3 M4 M5 M6 M7

Std. 3.79 3.93 2.78 2.04 6.33 0.63 0.63
3 Avg. 27.85 24.01 4.63 15.50 3.07 1.64 1.64
circles Min. 22.00 17.28 2.00 13.00 0.57 0.57 0.57

Time 51.66 1.50 2.91 164.27 2.49 3.70 1.76

Std. 4.38 5.65 5.62 4.53 0.68 0.60 0.60
4 Avg. 32.79 23.98 9.12 16.62 2.46 2.14 2.14
circles Min. 26.25 18.12 3.75 10.37 1.50 1.37 1.37

Time 64.95 2.21 2.00 235.34 2.91 3.03 1.48

Std. 3.74 4.87 1.87 5.54 6.34 1.14 1.14
5 Avg. 36.17 24.78 6.50 18.86 4.72 2.95 2.95
circles Min. 31.11 18.22 3.33 13.88 1.55 1.44 1.44

Time 70.94 2.80 3.40 287.94 4.54 4.72 1.83

Std. 3.00 6.30 7.58 1.62 3.83 1.56 1.56
16 Avg. 57.92 32.72 14.46 24.75 4.46 3.59 3.59
circles Min. 54.35 23.70 1.55 23.15 2.25 1.90 1.90

Time 254.43 7.38 3.97 1589.13 7.75 9.46 1.47

Fig. 8. Examples for line fitting. First (“Tracks”) and second (“Pyramid”) rows respectively fit seven and four lines. We do not show the results of MSH/
MSHF1, which are similar to those of MSHF2, due to the space limit.

TABLE 3
The CPU Time Used by the Seven Fitting Methods (in Seconds)

Data M1 M2 M3 M4 M5 M6 M7

Tracks 133.71 9.76 8.81 23,256.00 7.21 8.26 7.12
Pyramid 79.28 8.12 7.23 13,600.00 8.05 8.65 7.62
Coins 65.02 6.29 5.84 8,746.50 5.02 5.16 4.48
Bowls 9.01 4.33 3.68 862.34 3.81 3.98 3.64

Fig. 9. Examples for circle fitting. First (“Coins”) and second (“Bowls”) rows respectively fit five and four circles. We do not show the results of MSH/
MSHF1, which are similar to those of MSHF2, due to the space limit.
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MSHF2 can keep the representative modes corresponding
to model instances in most cases, while MSH may remove
some representative modes in some cases, which will
increase the average fitting errors. AKSWH can also
achieve a low average fitting error with the third lowest
standard deviation. In contrast, KF, RCG and T-linkage
obtain high average fitting errors. KF removes some
inliers during the procedure of outlier removal. RCG can-
not effectively find the representative sub-graphs corre-
sponding to the model instances. T-linkage cannot
segment the data points of intersection with high accu-
racy. (2) For the “four circles” data, the four circles with
different diameters intersect each other. MSH and
MSHF1/MSHF2 achieve the lowest average and minimal
fitting errors again. Among the other four competing
methods, AKSWH and T-linkage successfully estimate all
four circles, while KF and RCG miss one of the circles. (3)
For the “five circles” data, the five circles with different
diameters intersect together. All of AKSWH, T-linkage,
MSH and MSHF1/MSHF2 successfully estimate the five
circles, but MSHF1/MSHF2 achieve the best results of the
standard deviation, the average and minimal fitting
errors. In contrast, KF and RCG obtain high fitting errors.
(4) For the “sixteen circles” data, the sixteen circles with
the same diameter intersect together. This data include a
large number of model instances. MSHF1/MSHF2 can
effectively estimate the number of model instances. MSH
wrongly estimates the number during the repeating
experiments in 1 out of 50 times. However, MSH still
achieves a low average fitting error. In contrast, KF, RCG,
AKSWH and T-linkage cannot achieve low average fitting
errors, especially for KF, which fails to estimate the num-
ber of model instances in most cases.

For the performance of computational time, MSHF2
achieves the fastest speed among the seven fitting methods
for three data (i.e., the “four circles”, “five circles” and
“sixteen circles” data). AKSWH and MSH/MSHF1 achieve
the similar computational speed for the “three circles”,
“four circles” and “five circles” data. KF and T-linkage are
relatively slow. Especially for T-linkage which takes
1,589.13 seconds for the “sixteen circles” data, it is more
than 1,000 times slower than the proposed MSHF2. Among
MSH and MSHF1/MSHF2, MSHF2 is significantly faster
than MSH and MSHF1 (MSHF2 is about 1:41 � 5:27 and
2:04 � 6:44 times faster than MSH and MSHF1, respec-
tively). This is because MSHF2 uses the neighboring con-
straint to reduce the computational cost. RCG achieves fast
speed for the “three circles”, “four circles” and “five circles”
data, but obtains slow speed for the “sixteen circles” data
due to the large number of data points.

5.2 Real Images

5.2.1 Line Fitting

We evaluate the performance of all the competing fitting
methods using real images for line fitting (see Fig. 8). For
the “Tracks” image, which includes seven lines, there are
6,704 edge points detected by the Canny operator [35]. As
shown in Fig. 8 and Table 3, AKSWH, T-linkage, MSH and
MSHF1/MSHF2 correctly fit all the seven lines. However,
MSH, MSHF1/2 are faster than AKSWH and T-linkage. T-

TABLE 4
Quantitative Comparison Results of Homography Based

Segmentation on 19 Image Pairs

Data (#) M1 M2 M3 M4 M5 M6 M7

Std. 5.29 5.56 0.71 16.54 0.01 0.01 0.01

Bonython (1) Avg. 31.86 5.66 4.54 28.28 0.00 0.00 0.00

Time 1.01 0.49 1.44 11.65 3.40 3.63 0.96

Std. 0.29 0.01 1.91 14.87 0.01 0.01 0.01

Physics (1) Avg. 10.47 0.00 22.54 39.43 0.00 0.00 0.00

Time 3.02 0.24 3.45 12.68 1.43 2.33 1.75

Std. 2.78 0.01 1.64 26.66 0.01 0.01 0.01

Unionhouse (1) Avg. 27.16 0.30 2.74 24.81 0.30 0.30 0.30

Time 1.42 1.08 1.63 38.05 2.44 2.11 1.02

Std. 0.72 0.37 0.15 0.45 0.15 0.15 0.15

Elderhalla (2) Avg. 12.15 10.37 0.98 1.17 0.93 0.93 0.93

Time 3.34 1.66 2.79 15.28 3.38 4.57 2.16

Std. 0.00 2.42 1.37 0.58 0.96 1.10 1.10

Elderhallb (3) Avg. 34.51 10.12 13.06 12.63 3.37 2.94 2.94

Time 3.29 1.14 2.34 30.47 2.63 2.87 2.18

Std. 7.07 2.91 0.43 0.32 2.98 0.31 0.31

Hartley (2) Avg. 15.31 4.88 4.06 2.50 2.81 1.90 1.90

Time 2.92 1.21 2.12 62.16 2.01 2.14 1.63

Std. 6.24 0.01 5.11 3.38 5.89 0.82 0.82

Library (2) Avg. 13.19 9.77 5.79 4.65 2.79 2.37 2.37

Time 3.34 1.71 2.13 16.04 2.31 3.65 1.80

Std. 6.12 5.44 5.78 0.37 0.13 0.13 0.13

Sene (2) Avg. 12.08 10.00 2.00 0.44 0.24 0.24 0.24

Time 5.24 0.91 2.73 22.78 2.59 2.11 1.80

Std. 9.57 0.01 0.55 0.51 0.27 0.27 0.27

Nese (2) Avg. 28.03 36.61 3.54 1.88 0.20 0.20 0.20

Time 5.40 0.67 3.13 24.15 1.91 2.61 2.32

Std. 2.67 0.01 3.53 2.58 0.81 0.86 0.86

Ladysymon (2) Avg. 16.46 22.36 5.74 5.06 2.87 2.62 2.62

Time 3.06 0.83 2.87 20.86 2.76 3.44 2.39

Std. 0.01 8.34 0.14 0.25 0.41 0.33 0.33

Oldclassicswing Avg. 18.73 10.34 1.29 1.27 1.13 1.08 1.08

(2) Time 2.80 1.66 2.25 74.89 2.44 3.56 1.81

Std. 10.75 5.77 7.04 4.96 5.40 0.48 0.48

Neem (3) Avg. 10.25 11.17 5.56 3.82 2.90 1.78 1.78

Time 6.32 0.83 2.49 21.40 2.81 2.78 2.13

Std. 3.18 1.84 12.45 4.73 1.77 1.43 1.43

Johnsona (4) Avg. 25.74 23.06 8.55 4.03 3.73 3.02 3.02

Time 16.53 1.36 2.93 57.11 3.63 2.96 2.24

Std. 4.85 1.81 6.45 10.51 5.99 4.96 4.96

Johnsonb (7) Avg. 48.32 41.45 26.49 18.39 16.75 16.61 16.61

Time 14.52 4.18 4.73 261.62 5.67 6.48 5.00

Std. 2.49 5.22 4.26 4.54 16.53 3.26 3.26

Napiera (2) Avg. 28.24 30.96 30.86 23.37 32.51 27.78 27.78

Time 3.14 0.89 1.94 29.88 2.76 3.44 2.18

Std. 5.52 0.01 0.38 5.14 4.19 4.12 4.12

Napierb (3) Avg. 30.42 33.59 36.33 19.92 14.21 13.12 13.12

Time 2.45 0.65 3.33 21.93 2.18 3.31 1.87

Std. 4.09 3.74 4.53 6.65 15.84 9.50 9.50

Barrsmith (2) Avg. 22.28 54.64 20.08 29.33 37.80 24.48 24.48

Time 6.06 0.62 2.20 18.91 1.92 2.51 1.42

Std. 8.54 8.60 0.14 4.98 5.39 0.38 0.38

Unihouse (5) Avg. 38.32 41.70 14.91 14.04 10.99 9.29 9.29

Time 31.27 9.40 8.67 2908.61 6.25 13.50 10.50

Std. 4.85 1.81 5.10 0.13 8.16 8.69 8.69

Bonhall (6) Avg. 48.32 41.45 38.77 29.06 31.89 31.65 31.65

Time 14.52 4.18 7.58 835.38 4.15 9.22 7.87

Mean 24.83 20.97 13.04 13.89 8.70 7.38 7.38

Total
Std. 11.94 16.59 12.43 12.32 12.30 10.30 10.30

Median 25.74 11.17 5.79 12.63 2.87 2.37 2.37

‘#’ denotes the actual number of model instances in data.
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linkage is very slow due to the large number of input data
points. RCG correctly estimates the number of lines, but
some estimated lines are overlapped and two lines are
missed. This is because the potential structures in the data
are not correctly estimated by RCG during the detection of
dense subgraphs. KF only correctly fits three out of the
seven lines because many inliers belonging to the other four
lines are wrongly removed.

For the “Pyramid” image shown in Fig. 8, which includes
four lines with a large number of outliers, there are 5,576
edge points detected by the Canny operator. Only T-link-
age, MSH and MSHF1/MSHF2 succeed in fitting all the
four lines. In contrast, although KF also fits the four lines, it
wrongly estimates the number of lines (which is five lines
instead of four lines). Both RCG and AKSWH only correctly
fit three out of the four lines, although RCG successfully
estimates the number of lines in the data. AKSWH can
detect four lines after the clustering step, but two lines are
wrongly fused during the fusion step. For the CPU time
(see Table 3), RCG, AKSWH, MSH and MSHF1/MSHF2
achieve similar time, but KF and T-linkage are much slower
than the other five methods.

5.2.2 Circle Fitting

Next we evaluate the performance of the seven fitting meth-
ods using real images for circle fitting (see Fig. 9). For the
“Coins” image, which includes five circles with similar
numbers of inliers, there are totally 4,595 edge points
detected by the Canny operator. As shown in Fig. 9 and
Table 3, AKSWH, T-linkage, MSH and MSHF1/MSHF2 cor-
rectly fit all the five circles, and MSH and MSHF1/MSHF2
are the top-three fastest among all the seven fitting methods.
In contrast, two model hypotheses estimated by KF corre-
spond to one circle, and RCG correctly fits only four out of
the five circles.

For the “Bowls” image, which includes four circles with
significantly unbalanced numbers of inliers, 1,565 edge
points are detected by the Canny operator. We can see that
two circles estimated by both KF and RCG overlap in the
image. AKSWH correctly fits three circles but it misses one
circle, because most of the model hypotheses generated for
the circle with a small number of inliers are removed during
the process that AKSWH selects significant model

hypotheses. In contrast, T-linkage, MSH and MSHF1/
MSHF2 succeed in fitting all the four circles in this challeng-
ing case. However, MSH and MSHF1/MSHF2 are much
faster than T-linkage (see Table 3).

5.2.3 Homography Based Segmentation

We also evaluate the performance of the seven fitting
methods using the 19 real image pairs from the Adelai-
deRMF dataset [32]2 (the dataset contains 19 image pairs
designed for homography fitting—which we use here—
and 19 image pairs for motion segmentation—which we
use in Section 5.2.4 devoted to that topic) for homogra-
phy based segmentation. We repeat each experiment 50
times, and show the standard variances, the average fit-
ting errors (in percentage) and the average CPU time (in
seconds) in Table 4 (we exclude the time used for sam-
pling and generating potential hypotheses, which is the
same for all the fitting methods). Some fitting results
obtained by MSHF2 are also shown in Fig. 10.

From Fig. 10 and Table 4, we can see that MSHF1/
MSHF2 obtain good results, achieving the lowest average
fitting errors in 16 out of 19 image pairs. Although MSHF1
is slightly slower than MSH, it significantly improves the fit-
ting accuracy over MSH in 12 out of 19 image pairs. The rea-
son behind this is that MSHF1 removes less vertices
corresponding to model hypotheses than MSH, and thus
MSHF1 takes more time to seek modes in a hypergraph.
However, MSHF1 retains more good vertices corresponding
to significant model hypotheses, which improves its fitting
accuracy. MSHF2 achieves the same fitting errors as
MSHF1, but it is faster than MSHF1 in all the 19 image pairs.
In contrast, AKSWH only succeeds in fitting 10 out of 19
image pairs with low fitting errors. Although T-linkage can
also achieve low fitting errors in most of image pairs, it is
much slower than the other six competing methods. Both
KF and RCG achieve bad results in most cases. We note that
KF clusters many outliers together with inliers, and RCG is
very sensitive to its parameters when there exist many bad
model hypotheses in the generated model hypotheses. For
the overall fitting errors, MSH and MSHF1/MSHF2 achieve
the top-three best performance on the mean and median

Fig. 10. Some fitting results obtained by MSHF2 for homography based segmentation on the AdelaideRMF dataset.

2. http://cs.adelaide.edu.au/~hwong/doku.php?id=data
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fitting errors among all the seven competing fitting meth-
ods. MSHF1/MSHF2 also achieve the lowest standard
variances of fitting errors. For the performance of computa-
tional time, RCG achieves the lowest values in 17 out of 19
image pairs, but it cannot obtain low fitting errors. In short,
MSH and MSHF1/MSHF2 can achieve low fitting errors
within reasonable time for most image pairs.

5.2.4 Two-View Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the other 19 image pairs of the AdelaideRMF dataset to
evaluate the performance of the competing fitting methods.
The results are shown in Table 5 and Fig. 11.

From Table 5 and Fig. 11, we can see that both KF and
RCG achieve high fitting errors and both fail in most cases.
This is because when a large number of model hypotheses
are generated for two-view based motion segmentation to
cover all the model instances in the data, a large propor-
tion of bad model hypotheses may lead to inaccurate simi-
larity measure between data points, which results in the
wrong estimation of the number of model instances by KF
and RCG. AKSWH achieves better results than both KF
and RCG on the average fitting errors. T-linkage, MSH
and MSHF1/MSHF2 achieve low fitting errors, while
MSHF1/MSHF2 obtain relatively better results than T-
linkage and MSH (as shown in Table 5). MSHF1/MSHF2
achieve the lowest average fitting errors in 12 out of 19
image pairs and the second lowest ones in 6 out of the
remaining 7 image pairs. MSHF1/MSHF2 also achieve the
best performance on the standard variances, the mean and
median fitting errors for the overall results. It is worth
pointing out that MSHF1/MSHF2 achieve lower average
fitting errors than MSH in 11 out of 19 image pairs (and
they achieve the same average fitting errors in 6 out of the
remaining 8 image pairs). This benefits from the step of
hypergraph reduction.

For the computational time, MSH and MSHF1/MSHF2
do not achieve better results than RCG. However, MSH and
MSHF1/MSHF2 are significantly faster than KF in most
data. Compared with T-linkage, which achieves good per-
formance on fitting accuracy, MSH and MSHF1/MSHF2
show significant superiority regarding to the computational
time for all the 19 image pairs. Note that MSHF2 is faster
than MSHF1 for all the 19 image pairs due to the use of
neighboring constraint, which can effectively reduce the
computational cost.

We also evaluate the performance of the five competing
methods (i.e., AKSWH, T-linkage, MSH and MSHF1/
MSHF2) on the estimated number of model instances and
the average fitting errors with different numbers of gener-
ated model hypotheses for homography based segmenta-
tion and two-view based motion segmentation, as shown
in Fig. 12 (we do not show the results of KF and RCG since
they cannot achieve good results). We can see that, the
number of generated model hypotheses has significant
influence on the results of all the five fitting methods.
When the number of model hypotheses is large, all the five
fitting methods achieve relatively lower fitting errors. For
the estimated number of model instances, T-linkage
achieves the best results for both homography based seg-
mentation and two-view based motion segmentation.

TABLE 5
Quantitative Comparison Results of Two-View Based Motion

Segmentation on 19 Image Pairs

Data (#) M1 M2 M3 M4 M5 M6 M7

Std. 4.30 0.35 0.42 23.06 0.55 0.55 0.55

Biscuit (1) Avg. 0.61 14.39 1.41 25.84 1.30 1.30 1.30

Time 6.08 2.13 6.19 79.34 5.09 6.01 5.27

Std. 0.55 0.73 1.24 18.58 0.42 0.42 0.42

Book (1) Avg. 5.88 7.54 3.47 24.54 0.64 0.64 0.64

Time 6.02 0.75 5.49 24.97 4.08 6.56 4.81

Std. 0.22 0.88 0.86 22.34 0.66 0.66 0.66

Cube (1) Avg. 8.70 22.48 2.21 23.07 2.08 2.08 2.08

Time 7.02 1.80 5.93 79.48 6.94 6.01 5.11

Std. 0.11 2.11 0.97 32.65 1.07 0.74 0.74

Game (1) Avg. 18.81 19.31 2.61 38.15 2.44 2.44 2.44

Time 7.11 1.18 5.87 42.70 6.99 5.50 4.95

Std. 4.30 1.04 3.10 0.85 1.26 0.98 0.98

Cubechips (2) Avg. 8.42 13.43 4.72 5.63 3.80 3.55 3.55

Time 7.94 1.69 5.10 64.87 6.45 6.71 5.18

Std. 10.80 1.38 3.78 0.80 1.27 0.79 0.79

Cubetoy (2) Avg. 12.53 13.35 7.23 5.62 3.21 2.16 2.16

Time 6.08 1.34 4.97 51.65 5.74 6.30 4.89

Std. 3.92 3.27 6.06 1.32 0.95 0.78 0.78

Breadcube (2) Avg. 14.83 12.60 5.45 4.96 2.69 2.31 2.31

Time 7.07 1.53 6.10 46.17 6.01 6.05 4.82

Std. 0.19 9.53 10.74 1.85 2.71 0.74 0.74

Gamebiscuit (2) Avg. 13.78 9.94 7.01 7.32 3.72 1.95 1.95

Time 7.66 2.36 6.44 91.49 6.93 7.55 5.81

Std. 3.41 5.81 6.72 1.50 8.07 7.76 7.76

Breadtoy (2) Avg. 8.36 20.48 15.03 7.33 5.90 4.86 4.86

Time 22.51 2.12 15.18 68.62 9.48 13.02 5.87

Std. 8.22 8.15 8.58 1.43 1.96 1.96 1.96

Breadtoycar (3) Avg. 16.87 26.51 9.04 4.42 6.63 5.42 5.42

Time 5.70 0.98 4.56 24.15 5.48 6.18 5.06

Std. 10.71 5.31 1.40 1.16 1.82 1.82 1.82

Biscuitbook (2) Avg. 12.90 3.82 2.89 2.55 2.60 2.40 2.40

Time 7.84 2.03 6.59 129.47 8.52 9.60 6.57

Std. 4.00 1.98 3.17 1.60 0.92 0.90 0.90

Biscuitbookbox (3) Avg. 16.06 16.87 8.54 1.93 1.54 1.54 1.54

Time 8.50 1.71 5.11 53.44 6.11 6.35 5.44

Std. 7.26 6.64 3.41 7.03 4.39 1.75 1.75

Breadcubechips (3) Avg. 33.43 26.39 7.39 1.06 1.74 1.74 1.74

Time 16.53 1.36 2.93 57.11 8.35 13.28 4.35

Std. 4.99 12.18 0.95 7.72 7.18 6.62 6.62

Cubebreadtoychips Avg. 31.07 37.95 14.95 3.11 4.28 4.25 4.25

(4) Time 25.68 1.83 5.99 91.05 9.16 13.09 4.70

Std. 7.90 1.29 5.26 9.45 8.96 6.14 6.14

Breadcartoychips Avg. 26.96 49.36 42.86 16.96 33.92 25.06 25.06

(4) Time 6.91 1.96 4.92 40.76 6.23 5.14 4.02

Std. 9.09 1.59 1.67 0.44 5.10 7.56 7.56

Carchipscube (3) Avg. 10.96 38.96 51.75 17.51 20.72 25.51 25.51

Time 6.52 1.58 4.60 18.52 4.84 4.32 3.81

Std. 10.23 0.48 6.06 1.20 9.74 6.57 6.57

Toycubecar (3) Avg. 27.05 38.75 34.55 16.20 20.35 14.00 14.00

Time 7.77 0.68 5.72 25.35 3.94 6.06 4.73

Std. 9.90 1.50 5.96 1.91 4.13 7.77 7.77

Boardgame (3) Avg. 30.21 45.16 48.13 28.60 21.68 21.57 21.57

Time 2.36 1.39 7.57 58.07 4.34 5.11 4.63

Std. 3.41 0.92 10.74 1.85 5.32 2.08 2.08

Dinobooks (3) Avg. 30.86 54.27 24.72 19.52 16.08 18.05 18.05

Time 12.93 2.33 6.66 118.96 5.54 5.61 4.89

Mean 17.27 24.81 15.47 13.38 8.17 7.41 7.41

Total
Std. 9.81 15.00 16.55 10.91 9.48 8.63 8.63

Median 14.83 20.48 7.39 7.33 3.72 2.44 2.44

‘#’ denotes the actual number of model instances in data.
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However, MSH and MSHF1/MSHF2 also correctly esti-
mate the number of model instances when sufficient
model hypotheses are generated. For the fitting errors,
MSH and MSHF1/MSHF2 achieve the top-three best
results for homography based segmentation, and they also
achieve the top-three best results for two-view based
motion segmentation when the number of model hypothe-
ses is larger than 12,000.

6 LIMITATIONS

The proposed method (MSHF) is a parameter space based
fitting method, which can effectively segment data points
near the intersection of model instances. However, MSHF
cannot effectively estimate the model instance if there are
no (or there are very low proportions of) model hypothesis
candidates corresponding to the model instance in the ini-
tial generated model hypotheses.

For example, as shown in Fig. 13, the model instance cor-
responding to the “undetected plane” (in Fig. 13b) includes
only 4.17 percent inliers, and there are only about 0.06 percent
of generated model hypothesis candidates corresponding to
the model instance in the initial 10,000 generated model
hypotheses. MSHF cannot find the representative modes by
using the decision graph (in Fig. 13a). Note that this limita-
tion also affects the other parameter space based fittingmeth-
ods, e.g., AKSWH.

7 CONCLUSION

This paper formulates geometric model fitting as a mode-
seeking problem on a hypergraph, in which each vertex rep-
resents a model hypothesis and each hyperedge denotes a
data point. Based on the hypergraph, we propose a novel
mode-seeking algorithm, which searches for representative
modes by analyzing the weighting score of vertices and
the similarity between the vertices and their neighbors.
Hypergraph construction, hypergraph reduction and mode-
seeking are effectively combined by the proposed fitting
method (MSHF) to simultaneously estimate the number and
the parameters of model instances in the parameter space.
MSHF can also effectively alleviate sensitivity to unbalanced
data. Experimental results on both synthetic data and real
images have demonstrated that the proposedmethod signifi-
cantly outperforms several other start-of-the-art fittingmeth-
ods for geometric model fitting (i.e., line fitting, circle fitting,

Fig. 11. Some fitting results obtained by MSHF2 for two-view based motion segmentation on the AdelaideRMF dataset.

Fig. 12. Quantitative comparison for the estimated number of model
instances and the average fitting errors with different numbers of gener-
ated model hypotheses: (a) and (b) respectively show the performance
comparison for homography based segmentation on the “Johnsona”
image pair; (c) and (d) respectively show the performance comparison
for two-view based motion segmentation on the “Biscuitbookbox”
image pair.

Fig. 13. An example shows that the proposed method fails to estimate
the number of model instances in homography based segmentation on
the “Unionhouse” data (only one of the two views is shown for each
case). (a) The decision graph obtained by MSHF2. (b) The results
obtained by MSHF2.

WANG ETAL.: SEARCHING FOR REPRESENTATIVE MODES ON HYPERGRAPHS FOR ROBUSTGEOMETRIC MODEL FITTING 709

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on April 03,2020 at 07:48:39 UTC from IEEE Xplore.  Restrictions apply. 



homography-based segmentation andmotion segmentation)
when the data involve a large percentage of outliers.
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