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Deterministic Model Fitting by Local-Neighbor
Preservation and Global-Residual Optimization
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and Changwen Chen , Fellow, IEEE

Abstract— Geometric model fitting has been widely used in
many computer vision tasks. However, it remains as a challenging
task when handing multiple-structural data contaminated by
noises and outliers. Most previous work on model fitting cannot
guarantee the consistency of their solutions due to their random-
ness, precluding them from many real-world applications. In this
research, we propose a fast two-view approximately deterministic
model fitting scheme (called LGF), to provide consistent solutions
for multiple-structural data. The proposed LGF scheme starts
from defining preference function by preserving local neighbor-
hood relationship, and then adopts the min-hash technique to
roughly sample subsets. By this way, it is able to cover all model
instances in data in the parameter space with a high probability.
After that, LGF refines the previous sampled subsets by global-
residual optimization. Furthermore, we propose a simple yet
effective model selection framework to estimate the number and
the parameters of model instances in data. Extensive experiments
on real images show that the proposed LGF scheme is able
to observe superior or very competitive performance on both
accuracy and speed over several state-of-the-art model fitting
methods.

Index Terms— Model fitting, local-neighbor preservation,
global-residual optimization, min-hash, multiple-structure data.

I. INTRODUCTION

GEOMETRIC model fitting is a fundamental research
topic in computer vision [1]–[6]. The goal of model

fitting is to estimate the number and the parameters of model
instances (also called “structures”) in data. As the data in real
world often contain noises/outliers, how to effectively recover
structures from the data with noises/outliers has become a
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challenging task. Moreover, it is common in many computer
vision tasks (such as motion segmentation [4], homogra-
phy/fundamental matrix estimation [3], and 3D reconstruc-
tion [7]) where the data often contain multiple structures,
which inevitably interfere with each other during the model
fitting process.

Sampling minimal subsets is one key step of model fitting,
where a model hypothesis is generated for model selection.
Here, a minimal subset contains the minimum number (p) of
data points required to estimate a model hypothesis (e.g., 2
for line fitting and 4 for homography fitting). The minimal
subset can be classified into two types: an all-inlier minimal
subset which consists of all inliers belonging to a same model
instance, and an impure minimal subset which contains at
least an outlier (gross outlier or pseudo outlier1). To “hit”
all model instances in data,2 the required number of sampled
minimal subsets increases exponentially with the outlier ratio
and the minimal subset size (p). For example, RANSAC [8]
is one of the most successful sampling algorithms due to
its simplicity and effectiveness. However, to hit a model
instance with the probability β, RANSAC need to sample

log(1−β)
log(1−(1−α)p) minimal subsets, where α denotes the outlier
ratio. That is, RANSAC requires to sample a large number of
minimal subsets when the data contain a large proportion of
outliers. Therefore, randomly sampling becomes intractable in
practice.

Over the years, many guided sampling algorithms
[3], [9]–[14] have been proposed to reduce the number of
sampled minimal subsets while hitting all structures with
reasonable time. But these sampling algorithms still cannot
guarantee the consistent solutions due to their random nature.
To obtain consistent solutions, some deterministic sampling
algorithms (e.g., [3], [14]–[20]) are proposed. These deter-
ministic fitting methods are able to significantly improve the
stability of fitting results over random sampling-based fitting
methods. Nevertheless, it remains challenging to customize an
effective and efficient deterministic fitting method for practical
use. Note that, most existing deterministic fitting methods
only work for single-structure data, and their computational
efficiency is far from satisfactory.

In this research, we present a two-view “approximately”
deterministic model fitting scheme, based on Local-neighbor

1A pseudo outlier is an inlier belonging to the other model instance.
2Here, hitting all model instances means that at least one all-inlier minimal

subset corresponding to each model instance in data is sampled.
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Fig. 1. Overview of the proposed scheme for homography-based segmentation.

Preservation and Global-residual Optimization, aiming at
improving the effectiveness and efficiency of the fitting perfor-
mance for multiple-structural data. We observe that effective
correspondences (i.e., inliers) have similar local neighborhood
relationships in two-view images; While ineffective correspon-
dences (i.e., outliers) have very incoherent nearest neighbors,
due to physical constraints. We then define preference function
of input data points based on such observations. Subsequently,
we adopt the preference analysis to promote the extraction of
close correspondences by searching for correspondences with
similar neighborhood. To further improve the efficiency, we
adopt min-hash [21], a locality-sensitive hashing (LSH) [22]
procedure, to sample minimum subsets, where each data point
is selected to be a seed of a sampled minimum subset to hit
all model instances in data in the parameter space. To refine
the previous sampled minimum subsets (promoting spatial
proximity usually has the drawback of causing degeneracy),
we further introduce a global-residual optimization (GRO)
strategy.

In addition, we also propose a simple yet effective model
selection framework by adopting the effective sampled mini-
mum subsets, to estimate the number and the parameters of
model instances in data. We show in Fig. 1 an overview
of the proposed Local-neighbor preservation and Global-
residual optimization based Fitting (LGF) scheme as applied
to homography-based segmentation.

We summarize the key contributions of the proposed scheme
as follows:

• We propose to adopt preference analysis and the min-
hash technique to exploit local-neighbor preservation
relationships, for approximately deterministically sam-
pling a small number of effective minimal subsets. To the
best of our knowledge, we are the first one to gather
neighborhood information of feature points but not model
hypotheses to define the preference function for model
fitting. As a result, we can directly initialize some good
minimum subsets with stability; while most of existing
guided sampling algorithms randomly initialize minimum
subsets, that is, they cannot guarantee the quality and
stability of minimum subsets.

• We propose a global-residual optimization strategy by
analyzing the elements of the sampled minimal sub-
sets to refine the sampled minimal subsets. To improve
the effectiveness of GRO, we propose to consider the

consensus of the corresponding minimum subset to mea-
sure the quality of a model hypothesis.

• We propose a simple yet effective model selection frame-
work for model fitting. The framework introduces the
inlier noise scale constraint and the mutual information
theory [23], to estimate the number and the parameters
of model instances in data.

Extensive qualitative and quantitative experiments have been
performed on real images. The results show that the proposed
LGF scheme is able to obtain more accurate fitting results over
several state-of-the-art model fitting methods with much less
computation time.

It is worth pointing out that we can only call the proposed
LGF scheme as an “approximately” deterministic scheme,
since that LSH (used by the proposed LGF) is an approximate
algorithm, and we cannot in theory guarantee the deterministic
nature. However, in practice, LGF can provide very consistent
solutions for the model fitting problems (see more details in
Sec. V-A.2).

The rest of the paper is organized as follows: In Sec. II,
we review the related literatures. In Sec. III, we propose
an approximately deterministic sampling algorithm for model
hypothesis generation. Then, based on the model hypotheses,
we propose a novel model selection framework in Sec. IV.
In Sec. V, we present the experimental results. We further
discuss and analyze the proposed LGF scheme in Sec. VI,
and draw conclusions in Sec. VII.

II. RELATED WORK

In this section, we briefly review the related model fitting
methods for the current study according to the two steps
of a general model fitting framework. This related work
includes two method types: the first type focuses on the subset
sampling, whereas the second type focuses on the model
selection.

A. Sampling Algorithms

RANSAC, which randomly samples minimal subsets from
input data points, is one of the most popular sampling algo-
rithms. However, it often requires to sample a large number of
minimal subsets to hit all structures when the data include a
large proportion of outliers, and these sampled minimal subsets
often include a large proportion of bad ones (whose elements
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are not all inliers belonging to the same model instance).
Many guided sampling algorithms, e.g., [2], [9]–[13], [24]),
are proposed to sample high-quality minimal subsets for model
hypothesis generation.

According to the guided way in the sampling process,
these sampling algorithms can be roughly classified into two
categories, i.e., the prior information-based and the posterior
information-based algorithms. The prior information-based
sampling algorithms, e.g., Proximity [12], NAPSAC [13] and
PROSAC [10], require to provide the prior information (e.g.,
spatial distance, matching scores and superpixel information)
in advance to guide the sampling process. While the posterior
information-based sampling algorithms, e.g., MultiGS [9],
LO-RANSAC [11], HMSS [24] and CBS [2], use the infor-
mation derived from the minimal subsets sampled in previous
process to guide the following process.

These guided sampling algorithms can provide high quality
of minimal subsets for simple data, however, they cannot guar-
antee the consistency especially for multiple-structural data
with a large proportion of outliers. To address this issue, some
deterministic sampling algorithms (e.g., [3], [14]–[20], [25])
are proposed. Most of deterministic fitting methods, e.g., [15],
[17]–[20], [25]), propose to solve a global optimization prob-
lem to guarantee the consistency. Nevertheless, they only work
for single-structural data. [3], [14], [16] can deal with multiple-
structural data, but they still have obvious limitations. For
example, [16] requires to repeatedly generate a large number
of model hypotheses, which may results in computational inef-
ficiency; [3], [14] require to provide the superpixel information
in advance, and thus they cannot work well for the data with
complex scene due to the superpixel limitation.

The proposed sampling algorithm in this research samples
the minimal subsets from coarse to fine, and it is one of
deterministic sampling algorithms. However, the proposed
sampling algorithm is significantly different with the previous
sampling algorithms. Recall that the proposed sampling algo-
rithm adopts preference analysis and the min-hash technique
to exploit local-neighbor preservation relationships, to sample
a small number of effective minimal subsets. That is, the pro-
posed sampling algorithm is more general and it also can
be implemented in parallel to further improve the sampling
efficiency.

B. Model Selection Algorithms

The existing model selection algorithms can be roughly
classified into two categories, i.e., the consensus analysis-
based and the preference analysis-based algorithms, according
to the selecting way in the model selection process. The
preference analysis-based model selection algorithms, e.g.,
SWS [26], HF [27], RPA [28], J-linkage [29], T-linkage [30]
and MCT [1], estimate model instances by analyzing the
relationship between data points. For example, SWS intro-
duces large hyperedges to obtain the preference information of
data points. HF adopts a no-uniform hypergraph to represent
the relationship between model hypotheses and data points.
RPA proposes to adopt principal component analysis and
non-negative matrix factorization to exploit the relationship

between data points. J-linkage/T-linkage use different distance
measures to cluster data points based on the preference
information of data points. MCT extends T-linkage to handle
different nested classes of models. These model selection algo-
rithms are able to generally achieve good performance on the
fitting accuracy but they often suffer from high computational
complexity.

The consensus analysis-based model selection algorithms,
e.g., RansaCov [31], RHT [32], GPbM [33], AKSWH [34]
and MSHF [35], directly select model instances from the
generated model hypotheses in the parameter space. This
type of model selection algorithms selects model instances
according to different evaluation criterions, e.g., the number
of estimated inliers and the weighting scores. For example,
RansaCov selects model instances that include the maximum
number of inliers. RHT, AKSWH and MSHF select model
instances by defining different weighting functions. GPbM
selects model instances according to an optimization function.
There are also some energy-based model fitting methods, e.g.,
RCMSA [36], EMSAC [37], CORAL [38] and Prog-X [39].
These model selection algorithms are able to obtain good
fitting accuracy if we input high-quality model hypotheses.

In this research, we propose a consensus analysis-based
model selection algorithm, which selects model instances by
analyzing the weighting scores of model hypotheses and the
relationship between the model instances estimated in the
previous process and the remaining model hypotheses. Com-
pared with the existing model selection algorithms, the pro-
posed algorithm is more general and much simpler to be
implemented. Furthermore, the proposed algorithm is able
to estimate the number of model instances in data (note
that some of existing algorithms, e.g., RansaCov and RHT,
require users to provide the number of model instances in
advance).

III. PROPOSED APPROXIMATELY DETERMINISTIC

SAMPLING ALGORITHM

In this section, we describe the details of the proposed
approximately deterministic sampling algorithm. To this end,
we first search K nearest neighbors for each feature point
in two-view images, respectively. Then, based on the neigh-
borhood relationships, we construct binary preference sets
to represent data points (i.e., correspondences). After that,
we select each data point as a seed of a minimal sub-
set, and then, based on the preference sets, we adopt min-
hash to sample other elements of each minimal subset.
At last, we refine the minimal subsets by global-residual
optimization (GRO).

A. Local-Neighbor Preservation for Sampling
Minimal Subsets

In real-world data, the local neighborhood relationships
among feature points in a small region will be preserved
better than the absolute distance due to physical constraints,
especially for viewpoint changing [40]. Thus, for inliers,
they will share similar neighbors in two views; In contrast,
for outliers, their neighbors will be significantly different in
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two views. Based on this observation, we construct a binary
preference set to represent each data point.

Specifically, for a data point xi = (x́i , ýi ) ∈ X in two-
view images, we search K nearest neighbors Nx́i and Nýi of
the feature points x́i and ýi , respectively. Then, given n data
points, we construct an n × 2n binary matrix P by defining
its (i, j)-th entry in one view as:

P(i, j) =
�

1, if x j ∈ Nx́i ,

0, otherwise,
(1)

and P(i, 2 ∗ j) is accordingly defined based on Nýi in the
other view.

Then, each data point xi can be represented by a row Pi ,
i.e., the preference set PS(xi ). The main intuition is that,
if two data points are inliers belonging to a same model
instance, they will have similar neighbors, i.e., preference sets.
Thus, we can use the preference information to sample a
minimal subset. Here, to hit all model instances in data with
a high probability, we firstly select each data point as a seed
of a minimal subset, and then search the p − 1 data points
with the most similar preference sets as the seed to be the
other elements of the minimal subset. The similarity between
two data points (xi and x j ) can be measured by the Jaccard
distance [29]:

D(xi , x j ) = |PS(xi )
�

PS(x j )| − |PS(xi )
�

PS(x j )|
|PS(xi )

�
PS(x j )| . (2)

To efficiently compute the Jaccard distance between two
data points, we approximate it as computing the Hamming
distance of the respective hash signature.3 Note that locality-
sensitive hashing (LSH) [22] is a powerful tool for approxi-
mate nearest-neighbor search, and it is able to efficiently map
the similar ones of the input items to the same bucket of a
hash table with a high probability, while map the others to
different buckets. Here, we use LSH to map the similar data
points (which are the inliers of the same model hypothesis with
a high probability) to the same bucket (i.e. the same minimal
subset for model fitting).

Specially, following [41], [42], we define the LSH family
as: Given the input data points X = {x1, x2, · · · , xn} and the
corresponding distance measure D between data points, an
LSH is a probability distribution on family H of hash functions
h, and each h satisfies the property:

Pr
�
h(xi ) = h(x j )

� = D(xi , x j ), (3)

where h(x) ∈ {hi (x)}b
i=1 is a bijective random function.

Considering preference sets used to compute the Jaccard
distance are binary sets, we use min-hash [21], i.e., one of
LSH, to compute the hash signature.

The intuition of min-hash is described as follows: each data
point is mapped to a hash key constructed by the b hash
functions, and if two data points are similar enough, they
will be assigned to the same hash key. The number of hash
functions has been discussed in [43], and the hash functions

3A hash signature is collected by b hash values, which is computed by the
b hash functions.

can be implemented as a linear transformation on a convenient
finite field [43], which can obtain consistent results.

In our formulation, we select p−1 data points with the most
similar preference sets as the seed to be the other elements
of the minimal subset. However, to improve the quality of
minimal subsets, we propose a filtering strategy to remove
some impure minimal subsets. Specifically, we first compute
the initial elements of a minimal subset for each seed xi under
Jaccard distance:

MSxi = {x j |D(xi , x j ) < ξ, x j ∈ X}, (4)

where ξ is a nonzero parameter. Then select p − 1 data points
from the initial elements of each minimal subset. It is worth
pointing out that, the filtering strategy is able to improve the
quality of the sampled minimal subsets. This is because, if a
seed is an inlier, we can obtain enough elements to sample a
minimal subset for model hypothesis generation; In contrast,
if a seed is an outlier, it is hard to obtain enough elements.

Note that, [43] also uses min-hash to deal with the model fit-
ting problem as the proposed scheme. However, the proposed
scheme uses min-hash to sample minimal subsets while [43]
uses min-hash to cluster data points for model selection. Mean-
while, the proposed scheme can be implemented in parallel
while [43] requires to make a large number of iterations.
In addition, the proposed scheme adopts a filtering strategy
to remove some impure minimal subsets, and this will be
more appropriate for addressing the general model fitting prob-
lem. Therefore, the proposed scheme is significantly different
with [43].

B. Global-Residual Optimization for Refining Minimal
Subsets

In the last subsection, we use local-neighbor preservation
information to sample minimal subsets for model fitting, which
covers all model instances in data with a high probability.
To further improve the quality of sampled minimal subsets,
we adopt the global-residual optimization (GRO) strategy, used
in [2], [3], [24], by exploiting the residual values between
model hypotheses (generated by the sampled minimal subsets)
and data points.

The original GRO strategy is proposed in [24]. The main
steps of GRO strategy are described as follows: For a sampled
subset, sort the residual values between a model hypothesis
(generated by the sampled subset) and the input data points
in ascending order. Then, sample the data points which are
around the mk-th point in the order of residual values. Here mk

is the minimum cluster size (provided in advance). Repeated
these two steps until it converges to a solution.

The original GRO strategy is able to effectively refine
sampled minimal subsets within a few iterations. However,
it may always converge to a model instance for the data with
multiple model instances since the input minimal subsets are
randomly sampled. To deal with this problem, [2] proposes
a modified version of the iterative procedure. In particular,
it samples the subset from the data points which are not inliers
of the model hypothesis converged in the previous procedure.
To improve the fitting performance, [3] introduces a weighting
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score to measure the quality of the model hypothesis, and
selects the model hypothesis with the maximum score instead
of the converged one.

Although all of [2], [3], [24] have refined the sampled
minimal subsets to some extent, they have some obvious
limitations. For example, all of them require to provide the
number of model instances in advance, and the performance
of [3] depends on the accuracy of the weighting measure.

In this research, we improve the original GRO strategy
by analyzing the sampled minimal subsets to improve the
accuracy of the weighting measure. Specifically, for a model
hypothesis θi generated by a sampled subset ˜MSxi , we define
its weighting score as follows:

w(θi ) = 1

n

n�
j=1

EK(r j
i /bw(θi ))

s̃(θi )bw(θi)� 	
 �
(a)

Sd(˜MSxi )� 	
 �
(b)

, (5)

where s̃(θi ) is the estimated inlier noise scale of the i -th model
hypothesis; r j

i is the residual derived from the i -th model
hypothesis and the j -th keypoint correspondence; bw(θi ) is
the bandwidth of the i -th model hypothesis defined as [34]

bw(θi ) =
�

243
 1
−1 EK(λ)2dλ

35n
 1
−1 λ2EK(λ)dλ

�0.2

s̃(θi ); (6)

For the kernel function EK(·), we employ the popular
Epanechnikov kernel, which is written as follows:

EK(λ) =
�

0.75(1 − �λ�2), �λ� ≤ 1,

0, �λ� > 1.
(7)

Sd(˜MSxi ) is a penalty term based on the consensus of the
minimal subset ˜MSxi . We define the consensus of a minimal
subset ˜MSxi based on the ration of length and the angle
between an element x j and ˜MSxi :

Cs(x j , ˜MS xi ) = min{|x j |, |medxi |}
max{|x j |, |medxi |}

· (x j , medxi )

|x j | · |medxi |
, (8)

where medxi is the median value of all elements in ˜MSxi , and
(·, ·) denotes the inner product. The reason behind Eq. (8) is
that, if two data points are inliers belonging to a same model
instance, they will have similar lengths and directions [44].
Then, a larger value of Cs(x j , ˜MSxi ) ∈ [−1, 1] denotes
higher consensus of the minimal subset. Thus, Sd(˜MSxi )
is computed by the standard deviation of the consensus,
i.e., Sd(˜MS xi ) = std({1/Cs(x j , ˜MS xi )}x j∈˜MSxi

).

In Eq. (5), (a) is the term proposed in [34], and (b) is a
penalty term based on the consensus of the elements in a
minimal subset. For (a), θi will be assigned a higher weighting
scores if it contains a larger number of inliers and with smaller
residual values; For (b), θi will be punished (i.e., the score
becomes smaller) if its sampled subset contains more outliers.

The penalty term in Eq. (5) is able to improve the accuracy
of the weighting measure especially for the data that contain a
model instance with a small number of inliers. This is because,
a model hypothesis will be assigned a small score by (a) if

Algorithm 1 The Approximately Deterministic Sampling
Algorithm

it does not contain a large number of inliers, even when all
elements of its sampled subset are inliers; While the penalty
term will preserve its score for this case.

With all the above ingredients, we summarize the approxi-
mately deterministic sampling algorithm in Algorithm 1.

IV. PROPOSED MODEL SELECTION FRAMEWORK

In this section, we propose a novel model selection frame-
work to estimate the number and the parameters of model
instances in data.

One of the most popular model selection framework is
the “fit-and-remove” framework, which can be described as:
Sequentially sample model hypotheses, select one model
instance, and remove the inliers of the selected model instances
from the input data points. However, the framework requires
to repeatedly generate model hypotheses, which is very
time-consuming. To deal with this problem, an improved
“fit-and-remove” framework is proposed [3]: Sample model
hypotheses, sequentially select one model instance, and
remove redundant model hypotheses from the generated model
hypotheses according to the selected model instances.

We can see that, the improved version is able to avoid
repeatedly generating model hypotheses. However, it still
requires to provide the number of model instances in advance
to terminate the iterations. Note that the estimation of the
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Fig. 2. The framework of the proposed model selection.

Algorithm 2 The Proposed Model Selection Framework

number of model instances in data is also an important task
for the model fitting problem.

To relieve the above limitations, we propose a novel model
selection framework based on the inlier scale estimation and
the mutual information theory [23]. We find that if a model
hypothesis is the true model instance in data, it should satisfy
two conditions, i.e., enough inliers and significant differences
from the other estimated model instances on the inlier distri-
butions centered. Thus, we use the inlier scale estimation to
judge if the model hypothesis has enough inliers (i.e., mini-
mum cluster size mk), and the mutual information theory to
judge if two model hypotheses correspond to the same model
instance.

Specifically, as shown in Fig. 2, for the input model
hypothesis set, we filter candidates by using two conditions,
i.e., enough inliers (C(1) in Fig. 2) and significant differences
from the other estimated model instances (C(2) in Fig. 2).
Then we select the model hypothesis with the maximum
weighting score from the candidates as the estimated model
instance if the candidates are not null; Otherwise, we terminate
the process.

For C(1), we adopt the inlier noise scale estimators, e.g.,
ALKS [45], MSSE [46], TSSE [47] and IKOSE [34], to esti-
mate the inliers. Here, we use IKOSE to do this due to its
efficiency and simplicity of implementation. Thus, for a model
hypothesis θi , Cθi (1) is written as follows:

Cθi (1) =
�

1, if
��{r j

i }n
j=1 < 2.5s̃(θi)

�� > mk,

0, otherwise.
(9)

Fig. 3. An example of mutual information for model fitting. (a)-(c) Three
model hypotheses θ̃ j , θ1 and θ2. (d) The conditional probability of data points
with model hypotheses and the mutual information between model hypotheses.

By Eq. (9), the model hypothesis candidates with enough
inliers (> mk) will be kept; While the others will be removed
from the candidates.

For a model hypothesis θi , the condition Cθi (2) is written
as follows:

Cθi (2) =
⎧⎨
⎩

1, if
�

j=1,2,...

M I (θi , θ̃ j ) < 0,

0, otherwise,
(10)

where θ̃ j is the model instance estimated in the previous
iterations. M I (θi , θ̃ j ) is the mutual information between two
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Fig. 4. Six representative image pairs ((a)-(c) for homography-based segmentation and (d)-(f) for two-view-based motion segmentation) from the AdelaideRMF
dataset. We show the total number of correspondences (and the inlier ratios for each model instance).

model hypotheses θi and θ̃ j , and it is defined as:

M I (θi , θ̃ j ) = log
n

�n
q=1 ρ(xq |θi)ρ(xq |θ̃ j )�n

q=1 ρ(xq |θi)
�n

q=1 ρ(xq |θ̃ j )
, (11)

where ρ(xq |θi ) is defined as:

ρ(xq |θi ) = 1

s̃(θi )
√

2π
exp

�
− (rq

i )2

2s̃(θi )2

�
. (12)

Eq. (12) is based on the assumption of a Gaussian inlier noise
model [34], and it represents the conditional probability of a
data point xq with a model hypothesis θ .

Then, in Eq. (11), we compute the mutual information
between two model hypotheses θi and θ̃ j by measuring
the similarity between the inlier distributions centered on
θi and θ̃ j . Specifically, if M I (θi , θ̃ j ) is larger than zero,
then θi and θ̃ j are statistically dependent; Otherwise, they
are statistically independent. That is, if two model hypotheses
correspond to the same model instance (their inlier distribu-
tions are similar), they will share large mutual information;
Otherwise, they will share small mutual information.

To illustrate the mutual information, in Fig. 3, we show an
example on the “Neem” image pair. From Fig. 3(d), we can
see that, Eq. (12) is able to capture the inlier distributions
of model hypotheses. For the estimated model instance θ̃ j

(Fig. 3(a)) and two model hypotheses θ1 and θ2 (Fig. 3(b)
and 3(c)), θ̃ j and θ1 share similar inlier distributions, then

M I (θ1, θ̃ j ) = 1.55; While θ̃ j and θ2 share different inlier
distributions, then M I (θ2, θ̃ j ) = −60.18.

Thus, by Eq. (10), the model hypothesis candidates corre-
sponding to the same model instance with the model instances
estimated in the previous iterations will be removed; While
the others that have significant differences from the model
instances estimated in the previous iterations will be kept.

With all the above ingredients, we summarize the proposed
model selection framework in Algorithm 2. Compared with
the traditional “fit-and-remove” framework and the improved
version [3], the proposed framework not only does not require
to repeatedly generate model hypotheses, but also is able to
automatically estimate the number of model instances in data.
What is more, the proposed framework introduces the mutual
information theory, which is able to show the similarity of the
inlier distributions centered on two model hypotheses, to judge
if a model hypothesis is a candidate of the estimated model
instance. In contrast, [3] adopts the information of sampled
minimal subsets to remove model hypotheses, and thus the
performance of [3] largely depends on the quality of the
sampled minimal subsets.

V. EXPERIMENTS

In this section, we investigate the performance of the
proposed LGF fitting scheme on real images for the subset
sampling and model selection tasks. All experiments are run
on MS Windows 10 with Intel Core i7-8565 CPU 1.8G H z
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Fig. 5. The segmentation errors and the CPU time obtained by the proposed
LGF fitting scheme with different parameter values on six representative image
pairs.

and 16G B RAM. The segmentation error (SE) is computed
as follows [31], [33]:

SE = # mislabeled data points

# data points
× 100%. (13)

A. Algorithm Analysis

In this subsection, we analyze the parameters, the con-
sistency and some main components of the proposed LGF
schemes.

1) Parameter Analysis and Settings: There are four parame-
ters for LGF, i.e, K for preference set generation, the number
of hash functions b, the minimal subset selection threshold ξ ,
and the minimum cluster size (mk). We test different values of
the first three parameters for homography-based segmentation
and two-view-based motion segmentation. For each task we
respectively test three image pairs, which include different
numbers of model instances (see Fig. 4), from the Adelai-
deRMF dataset [48]. This dataset contains 19 image pairs for
homography-based segmentation, and 19 image pairs for two-
view-based motion segmentation, and the correspondences
are generated by SIFT matching [49]. Then we show the
segmentation errors and the CPU time obtained by LGF with
different parameter values in Fig. 5.

We can see that, when we set a small value of K , LGF
obtains large segmentation errors on the three image pairs for
two-view-based motion segmentation; While the segmentation
errors on the three image pairs for homography-based segmen-
tation have not significant changes. This is because, sampling
a minimal subset for two-view-based motion segmentation
requires 7 or 8 correspondences at least and for homography-
based segmentation only requires 4 correspondences, then

Fig. 6. The analysis of the parameter mk . (a) The number of inliers of
the generated model hypotheses. The bad model hypotheses are labeled in
gold, and the others correspond to different model instances are labeled in
different colors. (b) and (c) The results by using mutual information for
model selection after the first and second iterations, respectively. The removed
model hypotheses are labeled in cyan, and the estimated model instances are
labeled in red. We also label the remaining model hypotheses in ellipse in
(c). (d) The segmentation errors obtained by the proposed LGF fitting scheme
with different values of mk on six representative image pairs.

Fig. 7. Consistency analysis on six representative image pairs.

thus, the former requires more neighbors to support the cor-
responding preference sets. For the CPU time, it rises slowly
with the increase of K value. Thus, we set the value of K to
be larger than 12 for all the following experiments.

For the number of hash functions, LGF cannot obtain low
segmentation errors if the value is too small; While it will
require more CPU time if the value is too large; Therefore,
we set b to n/4 where LGF obtains the lowest segmentation
errors for most cases. For the value of ξ , we can see that LGF
can obtain low segmentation errors when its value is larger
than 0.7, since that it will filter out too many correspondences
if ξ is too small, which leads to not enough significant
sampling subsets for model fitting tasks. Thus, we set ξ to
be larger than 0.7 for all the following experiments.

Next, we continue analyze the setting of the parameter mk .
Recalled that mk has been used in Algorithms 1 and 2. Then,
we first analyze mk in Algorithm 2. mk is used to judge if
a model hypothesis is an effective model instance and the
number of model instances are also derived from it. Thus,
if we set mk too large or too small, then we will wrongly
estimate the number of model instances. In fact, it is not
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Fig. 8. Quantitative comparisons of night sampling methods on all image pairs from the AdelaideRMF dataset for homography-based segmentation (Top) and
two-view-based motion segmentation (Bottom). (Left to Right) The total number of input correspondences, the average inlier ratios of input correspondences,
the total number of sampled minimal subsets and the ratio of all-inlier minimal subsets on the sampled minimal subsets with respect to the cumulative
distribution. A point on the curve with coordinate (x, y) denotes that there are 100∗ x percents of image pairs which have values no more than y. The average
value of each case is also shown in the legend.

hard to obtain a reasonable value of mk . This is because a
good model hypothesis generally has a large number of inliers.
In contrast, for a bad model hypothesis, if it has a large number
of inliers, then its mutual information is also large as well
and it will be removed during the model selection process;
Otherwise, it only has a small number of inliers.

We show an example in Fig. 6 for the “Library” image pair.
From Figs. 6(b) and 6(c), we can see that, most of bad model
hypotheses are removed during the model selection process,
and the remaining model hypotheses only has a very small
number of inliers. Thus, we have many options for mk in
Algorithm 2.

However, mk will affect the quality of model hypotheses in
Algorithm 1. We test different values of mk for homography-
based segmentation and two-view-based motion segmenta-
tion on six representative image pairs, and show the results
in Fig. 6(d) (we do not show the CPU time since it has
not obvious changes). We can see that, LGF obtains low
segmentation errors for all six image pairs when mk = 9% ∗
n ∼ 10% ∗ n, where n is the number of input data points.
Thus, we fix mk = 10% ∗ n, which is also consistent with the
setting in [2], [3], [24], for most image pairs.

2) Consistency Analysis: To test the consistency of the
solutions provided by the proposed LGF, we repeat each
experiment 100 times on the six representative image pairs for
homography-based segmentation and two-view-based motion
segmentation, and report the segmentation errors and the CPU
time in Fig. 7.

We can see that, the segmentation errors obtained by LGF
have not changes on all the six image pairs. For the CPU time,
it varies only slightly for the repetitions. Therefore, LGF can
provide consistent solutions for the two model fitting tasks.

3) The Influence of the Components of LGF: Recall that
the proposed LGF is based on local-neighbor preservation
and global-residual optimization. Thus, in this subsection,
we analyze the influence of each component of LGF on the

TABLE I

PERFORMANCE OF THE THREE VERSIONS OF LGF FOR

HOMOGRAPHY-BASED SEGMENTATION (H) AND

TWO-VIEW-BASED MOTION SEGMENTATION (F)

final fitting results. Note that, we adopt preference analysis and
the min-hash technique to exploit local-neighbor preservation
relationships, for sampling a small number of minimal subsets.
Then we test a version (called as LGF1), which directly
uses Euclidean distance to compute the initial elements of
a minimal subset. That is, Eq. (4) is replaced by MSxi =
{x j |do(xi , x j ) < ξ, x j ∈ X}, where do(xi , x j ) is the Euclidean
distance between two correspondences. For the global-residual
optimization technique, we define a novel weighting score,
which considers the consensus of the elements in a minimal
subset. Thus, we test a version (called as LGF2), which has
not such consideration. After that, we also run the final version
LGF3 as a baseline.

We test different versions of LGF for homography-based
segmentation and two-view-based motion segmentation and
we respectively test three image pairs from the AdelaideRMF
dataset for each task. Then we report the segmentation errors
and the CPU time in Table I.

We can see that, LGF3 obtains the minimal segmentation
error among all three versions of LGF on all six image
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TABLE II

PERFORMANCE OF THE TEN COMPETING SAMPLING METHODS FOR HOMOGRAPHY-BASED
SEGMENTATION (D1-D3) AND TWO-VIEW-BASED MOTION SEGMENTATION (D4-D6)

pairs for the two model fitting tasks. Note that, two-view-
based motion segmentation is a more challenging task than
homography-based segmentation, since it is harder to sample
an all-inlier minimal subset. Thus, LGF1 and LGF2 achieve
similar segmentation errors as LGF3 for homography-based
segmentation, while LGF1 fails to fit model instances on
“Gamebiscuit” and “Breadcartoychips” image pairs and LGF2
fails on the “Breadcartoychips” image pair for two-view-based
motion segmentation. For the CPU time, although LGF1 is
slightly faster than LGF2 and LGF3 on all six image pairs,
they have no significant differences. Therefore, the proposed
local-neighbor preservation and global-residual optimization
techniques can improve the performance of model fitting
on the fitting accuracy without increasing significant time
cost.

B. Results on Real Data
In this subsection, we evaluate the performance of the

proposed LGF fitting scheme on the minimal subset sampling
task for two popular fitting tasks, i.e., homography-based
segmentation and two-view-based motion segmentation, and
we also provide a quantitative comparison on all image
pairs from the AdelaideRMF dataset with nine state-of-the-
art sampling methods, including RANSAC, NAPSAC [13],
LO-RANSAC [11], G-MLESAC [50], PROSAC [10], Multi-
GS [9], RCMSA [36], CBS [2] and SDF [3]. After that,
we also valuate the performance of LGF on the final fitting
task for the two popular fitting tasks, and provide a quantitative
comparison with seven state-of-the-art fitting methods, includ-
ing RansaCov [31], T-linkage [30], RPA [28], RCMSA [36],
Prog-X [39], MSHF [35] and SDF [3].

Fig. 9. Quantitative comparisons of seven fitting methods on all image pairs
from the AdelaideRMF dataset for homography-based segmentation (Top) and
two-view-based motion segmentation (Bottom). (Left to Right) The segmen-
tation errors and the CPU time with respect to the cumulative distribution.

For the sampling minimal subsets, we report the details of
the performance of the ten competing sampling methods on
six image pairs for the two popular fitting tasks in Table II.
We also report the quantitative comparisons of all competing
sampling methods on all image pairs from AdelaideRMF
dataset in Fig. 8. Here, it is wroth pointing out that, we can
only compare the results obtained by all sampling methods
within “reasonable” time. But, it is not an exact definition of
“reasonable” time since it may change with problem complex-
ity and processor. Then, we choose 5 seconds as an indicative
reasonable time, for the two popular fitting tasks.
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Fig. 10. Some challenging cases that the proposed LGF fitting method successfully estimates model instances ((a)-(c) for homography-based segmentation
and (d)-(f) for two-view-based motion segmentation). For visibility, in the image pairs, at most 200 randomly selected inliers are presented. We also show
the segmentation errors and the CPU time obtained by the proposed LGF fitting scheme.

For the final fitting results, we report the quantitative
comparisons (the segmentation errors and the CPU time)
of the eight competing fitting methods on all image pairs
from AdelaideRMF dataset for the two popular fitting tasks
in Fig. 9.

1) Homography-Based Segmentation: From Fig. 8, we can
see that RANSAC, NAPSAC, LO-RANSAC, G-MLESAC and
PROSAC sample an order of magnitude more minimal subsets
than Multi-GS, RCMSA, CBS, SDF and LGF within 5 seconds
for homography-based segmentation. This is because Multi-
GS, RCMSA, CBS, SDF and LGF introduce more constraints,
which require more time to deal with. However, only NAP-
SAC, Multi-GS, RCMSA, CBS, SDF and LGF achieve over
20% for the average ratio of all-inlier minimal subsets and
all sampled minimal subsets, and RANSAC, LO-RANSAC
and PROSAC cannot effectively sample high-quality minimal
subsets. Note that, SDF and LGF have more larger value of
the average ratio than the other seven competing sampling
methods (LGF is the best one), and LGF also samples more
number of minimal subsets than SDF within 5 seconds. From
Table II, we can see that, LGF not only achieves the largest
ratio of all-inlier minimal subset and the total number of
subsets for two out of the three image pairs and the second
largest ratio for another case, but also covers all model
instances in data on a balanced manner for the three image
pairs. That is, LGF provides high-quality sampled minimal

subsets, which will help improve the final fitting performance.
It is worth pointing out that, a good sampling result consists
of as more all-inlier minimal subsets as possible and as less
impure minimal subsets as possible, since the impure minimal
subsets will affect the final fitting performance. Thus, the ratio
of all-inlier minimal subset and the total number of subsets can
measure the sampling result more effectively than the total
number.

From Fig. 9, we can see that LGF achieves the lowest
average segmentation error among all eight fitting methods
on all image pairs from AdelaideRMF dataset for the final
fitting results. From the cumulative distribution, we also can
see that LGF achieves low segmentation errors for most
cases. More importantly, LGF has remarkably improved the
computational efficiency, that is, LGF reduces the average
CPU time from 2.78s, obtained by RCMSA (the fastest fitting
method among the other seven competing fitting methods),
to 0.31s. The reason behind this is that, LGF only deals
with a small number of high-quality minimal subsets, which
covers all model instances in data, and it also benefits from
the effectiveness of the proposed model selection framework.
It is worth pointing out that, only T-linkage, RCMSA, Prog-
X, MSHF and LGF are able to automatically estimate the
number of model instances in data, while the other three fitting
methods require to provide the number of model instances in
advance.
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Fig. 11. Some challenging cases that the proposed LGF fitting scheme fails to estimate model instances for homography-based segmentation. (a1) and (b1)
The ground truth results. (b1) and (b2) The fitting results obtained by LGF (we also show its segmentation errors and the CPU time).

2) Two-View-Based Motion Segmentation: From Fig. 8,
we can see that RANSAC, NAPSAC, LO-RANSAC,
G-MLESAC and PROSAC also sample more minimal subsets
than other five sampling methods within 5 seconds for two-
view-based motion segmentation, but only RCMSA, SDF and
LGF achieve over 50% for the average ratio of all-inlier
minimal subsets and all sampled minimal subsets. From the
three cases in Table II, we also can see that LGF outperforms
the other competing sampling methods for the performance on
the ratio of all-inlier minimal subsets and all sampled minimal
subsets, and it can cover all model instances in data even for
the challenging case, i.e., the “Cubebreadtoychips” image pair.

As shown in Fig. 9, for the final fitting results, LGF is
able to achieve low segmentation errors for most cases on
all 19 image pairs within very few seconds. Compared with
other seven fitting methods, LGF not only achieves the lowest
average segmentation errors but also is the fastest fitting
method. Thus, LGF is an effective and efficient fitting method.

VI. DISCUSSIONS

In this section, we further discuss the performance of the
proposed LGF scheme. We show some challenging cases that
LGF successfully estimates model instances in Fig. 10.

For the “Barrsmith” image pair, a model instance is split
into two, which may cause high segmentation errors. However,
LGF can avoid this situation due to the effectiveness of
its global-residual optimization strategy. For the “Elderhallb”
image pair, the three model instances have similar background,
which may make it difficult to distinguish the input corre-
spondences. While LGF is able to achieve low segmentation
errors since LGF can preserve local-neighbor relationships
of input correspondences. For the “Unihouse” image pair,
the model instance (labeled carmine color in Fig. 10) only
contains 4.17% inliers, while the other four model instances
contain 23.99%, 23.80%, 23.99% and 7.49% inliers, respec-
tively. As we know, most of state-of-the-art model fitting

methods cannot effectively deal with the “Unihouse” image
pair. However, LGF not only correctly estimates the number
of model instances but also achieves a low segmentation error
within a few seconds, due to its high-quality sampled minimal
subsets and the effective model selection framework.

For the two-view-based motion segmentation, the “Carchip-
scube and “Toycubecar” image pairs also contain unbalanced
number of inliers and LGF can obtain good performance
on the fitting accuracy and computational efficiency. The
model instances in the “Dinobooks” image pair have similar
background and the case also contains a large proportion
of outliers (i.e., 44.54%). Thus, it is hard to achieve a low
segmentation error for a model fitting method. However, LGF
is able to achieve the lowest segmentation errors among several
state-of-the-art model fitting methods.

We also show some challenging cases that LGF fails to
estimate model instances in Fig. 11. We can see that the two
image pairs include extremely unbalanced number of inliers,
i.e., the minimal and maximum inlier ratios are 6.20% and
31.41% for the “Bonhall” image pair, 2.43% and 46.84%
for the “Johnsonb” image pairspair, respectively. Moreover,
the correspondences in the “Bonhall” image pair are far part,
which is a very challenging situation for both the minimal
subset sampling and model selection. Note that, this weakness
also affects most of state-of-the-art fitting methods.

VII. CONCLUSION

In this research, we propose a two-view approximately
deterministic model fitting scheme (called LGF), which con-
sists of an effective and efficient two-view approximately
deterministic sampling algorithm and a simple yet effective
model selection framework. For the proposed sampling algo-
rithm, we exploit local-neighbor preservation relationships of
input correspondences to roughly sample minimum subsets
and then refine these subsets by a global-residual optimization
strategy. The proposed sampling algorithm is able to sample a
small number of high-quality minimal subsets, which include
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a high ratio of all-inlier minimal subsets. For the proposed
model selection framework, based on the effectiveness of
our proposed weighting measure for each model hypothesis,
we introduce the inlier noise scale constraint and the mutual
information theory, to simultaneously estimate the number and
the parameters of model instances within very few seconds.
Compared with several state-of-the-art model fitting methods,
extensive experiments on real images demonstrate the superior
performance of LGF on both fitting accuracy and computa-
tional efficiency.
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