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a b s t r a c t 

In this paper, we propose a novel Bit-Slicing Context Attention Network (BSCA-Net), an end-to-end net- 

work, to improve the extraction ability of boundary information for polyp segmentation. The core of 

BSCA-Net is a new Bit Slice Context Attention (BSCA) module, which exploits the bit-plane slicing infor- 

mation to effectively extract the boundary information between polyps and the surrounding tissue. In 

addition, we design a novel Split-Squeeze-Bottleneck-Union (SSBU) module, to exploit the geometrical in- 

formation from different aspects. Also, based on SSBU, we propose an multipath concat attention decoder 

(MCAD) and an multipath attention concat encoder (MACE), to further improve the network performance 

for polyp segmentation. Finally, by combining BSCA, SSBU, MCAD and MACE, the proposed BSCA-Net is 

able to effectively suppress noises in feature maps, and simultaneously improve the ability of feature ex- 

pression in different levels, for polyp segmentation. Empirical experiments on five benchmark datasets 

(Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB and CVC-300) demonstrate the superior of the proposed BSCA- 

Net over existing cutting-edge methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Image segmentation has aroused great concern from computer 

ision [1–3] . It focuses on classifying each pixel according to the 

ontext information in the image. In recent years, image segmenta- 

ion methods are widely adopted to specific domains such as polyp 

egmentation which aims to identify and segment polyp from an 

mage [4] . They have also been applied to medical image analysis, 

roviding a valuable information for clinical diagnosis and pathol- 

gy research, and pathology studies. 

In clinical settings, polyp segmentation is essential to provide 

ey information for prevention of the colorectal cancer. The col- 

rectal cancer is the third most prevailing cancer and the fourth 

ost fatal cancer on earth, imperiling human life and safety [5] . 

arly colonoscopy averts millions of deaths from colorectal can- 

er. According to the information of polyps from colonoscopy, doc- 

ors can remove colorectal polyps before they develop into col- 

rectal cancer. With the help of automatic polyp segmentation, 
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olonoscopy specialists can identify 20% more colon polyps to im- 

rove diagnostic accuracy [6] . 

Recently, convolutional neural networks (CNNs) are introduced 

or polyp segmentation and have achieved great success. CNN 

ased polyp segmentation methods, such as, Psi-Net [7] , Pra- 

et [8] and SA-Net [9] , are generally inspired by the salient object 

etection (SOD) since they pay more attention on object (polyp) 

egion than the surrounding scene. Note that, the edge guidance 

that plays an important role in SOD) requires additional edge 

ata, and this often makes a polyp segmentation method suffer 

rom computational inefficiency. To obtain the shape and boundary 

nformation, Psi-Net constructs three parallel decoders for polyp 

egmentation. Pra-Net introduces reverse attention [10] to reverse 

oarse segmentation map for obtaining boundary cues as the edge 

uidance. SA-Net proposes a shallow attention module based on 

he complementarity of different features, and multiplies shallow 

eatures with deep features to obtain clearer boundary information 

n deep features. However, the boundary information derived from 

si-Net, Pra-Net and SA-Net, is often ambiguous, which will lead to 

ub-optimal performance for polyp segmentation. 

To address the problem, we develop a Bit-Slicing Context At- 

ention (BSCA) mechanism to obtain the boundary information 

https://doi.org/10.1016/j.patcog.2022.108917
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108917&domain=pdf
mailto:gbx@mju.edu.cn
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Fig. 1. Overall architecture of the proposed BSCA-Net.. 

b

p

i

p

r

n

b

m

b

i

N

c

s

t

d

t

t

d

t

w

s

S

S

a

S

t

p

o

o

t

g

w

h

f

(

t

p

S

t

T

o

 

b

t

e

a

2

m

a

o

2

m

p

t

o

m

t

a

a

h

m

u

o

l

c

t

s

b

y exploiting the bit-plane slicing information. Note that, high-bit 

lanes involve the bulk of valid boundary information since there 

s little variability in high bit planes in a region. In contrast, low-bit 

lanes include less boundary cues, and cost more computational 

esources due to their larger noisy information. Thus, we propose a 

ovel BSCA module, which utilizes high bit planes to capture valid 

oundary information from a global feature map. For polyp seg- 

entation, the proposed BSCA module is able to effectively extract 

oundary information when polyps are similar to their surround- 

ngs. 

In addition, the existing U-Net structures, such as U-Net [11] , U- 

et++ [12] , and ResU-Net++ [13] , generally use simple addition or 

oncatenation operations to fuse different level features progres- 

ively from the encoder and forward them to the decoder. For fea- 

ure fusion, these two operations tend to generate lots of redun- 

ant information, which will weaken the really useful features and 

he characteristics of level-specific features simultaneously, leading 

o inaccurate details and rough boundaries of polyps. More specific, 

ue to the redundant information generated by the fusion opera- 

ion, the representation ability of feature maps may be decreased, 

hich even results in the loss of really useful features that are es- 

ential to accurate polyp segmentation. 

To address the above challenge, we propose a novel Split- 

queeze-Bottleneck-Union (SSBU) module, which consists of Split, 

queeze, Bottleneck and Union operations. The proposed SSBU is 

ble to exploit the geometrical information from different aspects. 

pecifically, the Split operation generates multiple paths to exploit 

he geometrical information of feature maps from different as- 

ects. The Squeeze operation compresses channel-wise information 

f feature maps to produce the channel descriptors. The Bottleneck 

peration extracts the channel dependence to learn for achieving 

he weight of each channel. The Union operator combines and ag- 

regates the geometrical information from multiple paths. Then, 

e design an multipath concat attention decoder (MCAD) to en- 

ance the representation ability of feature maps during fusing dif- 

erent levels of features, and an multipath attention concat encoder 

MACE) to extract comprehensive information of level-specific fea- 

ure maps. 

Finally, with the proposed BSCA, SSBU, MCAD and MACE, we 

ropose a novel simple and effective framework, termed as Bit- 

licing Context Attention Network (BSCA-Net), for polyp segmen- 

ation. We show the overall architecture of BSCA-Net in Fig. 1 . 

he proposed BSCA-Net is able to improve the extraction ability 

f boundary information. 

In summary, the contributions of this paper are threefold: 

• We propose a novel attention mechanism by exploiting the bit- 

plane slicing information, for polyp segmentation. The proposed 
2 
attention mechanism is able to capture the edge guidance from 

a global map and further enhance the representation ability of 

level-specific feature maps through high-bit plane learning. 
• We design a novel SSBU module to extract rich contextual and 

geometric information. Based on the SSBU module, we propose 

two effective decoder and encoder to capture geometric infor- 

mation, for providing a comprehensive representation of the in- 

put features. 
• Extensive experiments demonstrate that our approach advances 

state-of-the-art performance for polyp segmentation and out- 

performs most cutting-edge models. In particular, on CVC300 

dataset, BSCA-Net achieves a 6 . 0% boost for mean IoU, and im- 

proves mean Dice from 88 . 8% to 92 . 7% . 

The rest of the paper is organized as follows: In Section 2 , we

riefly introduce some related work in the area. Then, we provide 

he details of the proposed method in Section 3 , and present the 

xperimental results and discussions in Section 4 . Finally, we draw 

 conclusion in Section 5 . 

. Related work 

In the section, we briefly review the learning-based polyp seg- 

entation methods highly related to our paper. In addition, we 

lso introduce some attention mechanisms, which are related to 

ur work. 

.1. Polyp segmentation 

Polyp segmentation is a pixel-level task, which exactly seg- 

ents polyps from the colonoscopy image. However, exacting 

olyp segmentation is very challenging, since polyps are similar 

o its surrounding tissues in the colonoscopy image and polyps 

ften include various size, color and texture. Thus, polyp seg- 

entation networks generally focus on extracting semantic fea- 

ures with the detail information. To extract color, shape, texture 

nd appearance features, early traditional methods utilize manu- 

lly designed features [14,15] . Nevertheless, these methods often 

ave high miss-detection rate due to the limited representation of 

anually designed features. Thus, polyp segmentation has grad- 

al developments from traditional methods to deep learning meth- 

ds [4,16,17] . These deep learning methods detect polyps by box- 

evel prediction results, but they fail to locate accurate shape and 

ontour of polyps. To improve the performance of polyp segmen- 

ation, a fully convolutional network (FCN) is used to identify and 

egment polyps from colonoscopy images [18,19] . However, FCN- 

ased methods rely on low-resolution features to generate the fi- 
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al prediction, resulting in rough segmentation results and fuzzy 

oundaries. 

Recently, U-Net [11] is a typical structure network for polyp 

egmentation, due to its fusion ability for the semantic information 

nd spatial details from different level features. For U-Net, the en- 

oder block extracts feature maps from input images, and the de- 

oder block optimizes features of encoder and designs the task for 

olyp segmentation. U-Net directly adopts simple skip connections 

o fuse feature maps from the encoder to the decoder. Simple skip 

onnections, which mean that the feature maps of the encoder 

re directly received in the decoder, may depress the segmenta- 

ion performance. To solve this problem, U-Net++ [12] reformu- 

ates the dense skip connections to combine feature maps between 

he encoder and the decoder and obtains promising performance. 

ompared with simple skip connections, the feature maps of the 

ncoder undergo a dense convolution block, then they are re- 

eived in the decoder for the dense skip connections. Later, ResU- 

et++ [13] introduces four advanced techniques: residual compu- 

ation [20] , squeeze and excitation [21] , atrous spatial pyramidal 

ooling [22] , and attention mechanism, to further improve seg- 

entation performance. Recently, EU-Net [23] develops a semantic 

eature Enhancement Module to enhance the semantic information 

y applying different sizes of patch-wise non-local attention block. 

n addition, Threshold-Net [24] proposes a two-branch network in- 

luding a threshold branch and a segmentation branch. The thresh- 

ld branch is a decoder to utilize semantic information for pre- 

icting the threshold map, while the segmentation branch decodes 

he same semantic information to predict the likelihood map. ACS- 

et [25] designs an adaptive context selection based U-Net frame- 

ork to enhance features according to the size of the polyp region. 

hese methods concentrate on segmenting the polyp region, but 

hey ignore the region-boundary relationship, which plays a criti- 

al role in the performance of polyp segmentation [8] . 

There are also some methods [7,8,26] based on U-Net, which 

estore the boundary for polyp segmentation by building the 

elationship between the boundary and region features. Psi- 

et [7] constructs three parallel decoders to further obtain shape 

nd boundary information. SFA-Net [26] proposes a selective fea- 

ure aggregation structure, with a shared encoder and two mu- 

ually constrained decoders, to predict region and boundary of 

olyps. However, both two methods do not fully capture the rela- 

ionship between region and boundary. Recently, Pra-Net [8] puts 

orward partial decoders to generate the global map, and uti- 

izes the reverse global map to mine the dependence between the 

oundary and the polyp region. But this method lacks the expres- 

ion of feature maps, which results inaccurate region location in 

he blurry boundary of polyps. 

Our network is also based on U-Net, but it generates multiple 

aths to capture the geometrical information of feature maps from 

ifferent aspects, which enhances a comprehensive understanding 

f the input features. Note that, our network is used for each scale 

o further exploit the information of feature maps. 

.2. Multi-scale representation 

Multi-scale representation has been widely used in computer 

ision. Image pyramid is an effective multi-scale representation 

tructure to interpret images with multi-resolution for process- 

ng multi-scale objects across visual tasks. In machine learning, 

ome researchers [27,28] use different resolution classifiers to de- 

ect objects, which contribute to detecting small objects in rel- 

tively small window classifiers. In CNNS, some object detection 

asks [29,30] extract features for each layer of the image pyramid. 

eepLab [22] proposes the Atrous Spatial Pyramid Pooling method 

o fuse multi-scale context information through different scales of 

eceptive fields in semantic segmentation. DeepLab continues pool- 
3

ng and downsampling results in reduced resolution, resulting in 

nsufficient accuracy in semantic segmentation. In the segmenta- 

ion task, the methods based on image pyramid extract different 

cales features from multi-scale input images for fusion, to improve 

he network performance. However, due to the multi-scale input 

f image pyramid, a large number of gradients are calculated and 

aved in memory, resulting in high requirements on hardware. 

Bit-plane is introduced to obtain the significant and insignifi- 

ant bits [31] , which can cluster and generate more images for 

rain tumor segmentation. However, the information from two sig- 

ificant bits is not sufficient to capture complete information. 8 

it planes are used in the RGB dermoscopic images for each color 

omponent to segment skin lesion [32] . However, the above meth- 

ds are designed with highly regular input data formats, i.e., RGB 

mages. Note that, deep learning based polyp segmentation meth- 

ds require the input data to be range [ 0 − 1 ], which is beneficial

o make the model training convergence stable. 

In this paper, we try to introduce the multi-scale representa- 

ion (the bit slicing method) and design a novel BSCA module to 

etter capture boundary information at different scales for polyp 

egmentation. 

.3. Attention mechanism 

The attention mechanism is a dynamic selection process, which 

daptively weights features according to the importance of in- 

ut. Attention mechanisms have been widely used in many vi- 

ual tasks. For example, RMA [14] utilizes an attention mechanism 

o handle the image classification issue. PESA-Net [33] employs 

he permutation-equivariant split attention mechanism to corre- 

pondence learning. Reverse attention [10] proposes a novel at- 

ention to guide side-output residual learning for the salient ob- 

ect detection. Since the attention mechanism comes into polyp 

egmentation, the segmentation performance has made great ad- 

ances [9,14,17,34,35] . Mnih et al. [14] adopted attention mecha- 

isms to obtain promising performance for polyp segmentation. 

ang et al. [34] applied attention gate to the skip connections be- 

ween the encoder and the decoder for U-Net. Tomar et al. [35] in- 

roduced a squeeze and excitation layer to dynamically assign 

eights to each feature channel, which serves as a channel at- 

ention mechanism. PNS-Net [17] utilizes the normalized self- 

ttention (NS) block to quicken the inference rate. For excluding 

he effects of color, SA-Net [9] designs the color exchange oper- 

tion to capture the image contents and colors, and forces the 

odel to focus on the polyp shape and structure. Although these 

ethods realize some performance optimizations, they ignore the 

mportant value of the extraction ability of boundary information 

rom feature maps. 

In this work, we design a novel BSCA mechanism to obtain 

lenty of valid boundary information through the region-boundary 

elationship, for improving the polyp segmentation accuracy. 

. The proposed method 

In this section, we demonstrate the architecture of the pro- 

osed Bit-Slicing Context Attention network (BSCA-Net). First we 

ntroduce the overall architecture. Then we introduce the details 

nd specific functions of each module, including Bit Slicing Con- 

ext Attention (BSCA) module, Multipath Attention Concat Encoder 

MACE) and Multipath Concat Attention Decoder (MCAD). 

.1. Overall architecture 

As shown in Fig. 1 , we design the overall architecture of BSCA- 

et, which consists of BSCA, MACE and MCAD. In BSCA-Net, we ex- 

ract five levels of features ( f , f , f , f and f ) from the Res2Net-
1 2 3 4 5 



Y. Lin, J. Wu, G. Xiao et al. Pattern Recognition 132 (2022) 108917 

Fig. 2. The architecture of our Bit Slicing Context Attention module. 
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ased backbone network [36] , and take ( f 1 , f 2 ) and ( f 3 , f 4 , f 5 ) as

ow-level features and high-level features, respectively. The reason 

ehind this is that, compared with low-level features, high-level 

eatures use less computing resources since high-level features in- 

lude less spatial resolution and more core features [10] . 

Based on the five levels of features from the backbone network, 

e add a novel BSCA module to extract boundary information. We 

lso design a Split-Squeeze-Bottleneck-Union (SSBU) module to en- 

ance the representation ability of feature maps during the fusion 

f different levels of features. For actively using SSBU, we imple- 

ent an encoder (MACE) for BSCA-Net. This helps to extract global 

eatures from different levels of features. Also, we design a sim- 

le decoder (MCAD) corresponding to MACE, which contributes to 

ggregating the final features from different levels of encoder fea- 

ures. 

Specifically, MCAD gathers features from three encoder modules 

o fusion features. Features from MCAD are used to predict an ini- 

ial guidance map by an 1 × 1 Conv block. BSCA concatenates fea- 

ures from MACE and MCAD, and uses an initial guidance map to 

he context guidance. Note that, the output features of BSCA, not 

nly are directly connected to the next BSCA, but also are used 

o generate a new global guidance map by an 1 × 1 Conv Block. 

hen, the global guidance map from BSCA is added with the initial 

uidance map from MCAD, which complements the global guid- 

nce map to obtain more accurate guidance for the next BSCA. Af- 

er the first BSCA, we concatenate features of MACE and the output 

f previous BSCA in the next BSCA. Also, the guidance map from 

he previous BSCA is used as a context guidance in the next BSCA. 

fter three recurrent BSCAs, the final output is computed with the 

igmoid function to obtain a final prediction. 

In summary, the overall architecture shows that the backbone 

eatures are encoded by MACE, and encoded features are for- 

arded to the decoder for the initial guidance map, which leads 

SCA to learn a residual guidance map apart from the initial map. 

his helps the consequent BSCA focus more on the unclear area. 

o further attain boundary information, three BSCAs are used to 

uild relationship between regions and boundaries. Recurrently us- 

ng BSCA to extract boundary information, helps to calibrate some 

ault predictions. 

.2. Bit slicing context attention module 

In this subsection, we propose a novel attention mechanism 

BSCA), which exploits the bit plane slicing information to aggre- 

ate features and the context guidance for obtaining the boundary 

nformation, as shown in Fig. 2 . 

For the input guidance map M of BSCA, to ensure the stabil- 

ty of data from M, we implement the Min-Max Normalization to 

cale M to the range [ 0 − 1 ]. The normalized guidance map M norm 

s computed as follows: 

 norm 

= 

M − M min 

M − M 

, (1) 

max min 

4 
here M min and M max represent the minimum and maximum val- 

es in M, respectively. 

Given the normalized guidance map M norm 

, we can obtain bit 

lanes by Algorithm 1 . We can see that, the first bit from our al-

orithm is about 1 / 2 of M norm 

, and the second bit is about 1 / 2 of

he remainder of the first bit, and so on to the eighth bit. Finally, 

e downsample the values of eight bit planes composed of a set 

f bits, resizing them to 0 or 1. 

lgorithm 1 The proposed bit-plane slicing algorithm. 

nput: Salience~map~M norm 

. 

1: Bit 1 ← − � M norm 

/ 2 −1 � 
2: M norm 

← − M norm 

mod 2 −1 

3: Bit 2 ← − � M norm 

/ 2 −2 � 
4: M norm 

← − M norm 

mod 2 −2 

5: Bit 3 ← − � M norm 

/ 2 −3 � 
6: M norm 

← − M norm 

mod 2 −3 

7: Bit 4 ← − � M norm 

/ 2 −4 � 
utput: Four bit planes ( Bit 1 , Bit 2 , Bit 3 and Bit 4 ). 

We show an example of the slices from first bit to eighth bit 

lanes in Fig. 3 . We realize that the first bit plane contains the 

ost significant bit. However, the sequent bit planes have other 

nformation, which is highly related to boundary information. In- 

tead of using a single plane, we argue that the combination of 

ultiple bit planes is beneficial to extract comprehensive boundary 

nformation. In contrast to using all bit planes, actively selecting bit 

lanes to compute can reduce the impact of noises and computing 

esources. In Section 4.3 , we show that the first four bit planes are

he most effective combination. 

To obtain useful boundary information by exploiting the first 

our bit planes, we propose a novel attention mechanism, i.e., 

SCA. In BSCA, we concatenate the input features from MACE and 

revious BSCA (or MCAD) as the input feature f in : 

f in = Cat 
{

f mace , f pre v ious 

}
, (2) 

here f mace denotes features from MACE module and f pre v ious de- 

otes features from previous BSCA or MCAD. Then, we use a point- 

ise convolution on f in to get the global features f g , as follows: 

f g = ω( f in ) (3) 

here ω(·) represents a point-wise convolution. 

We eliminate the last four bit planes to remove noises and only 

se the first four bit planes to extract useful boundary informa- 

ion. We use the first bit plane to keep the most significant data 

nd employ the next bit planes to complement more boundary in- 

ormation. Then, we can obtain the first four bit planes ( Bit 1 , Bit 2 ,

it 3 and Bit 4 ) by Algorithm 1 . 

Then, we exploit the first four bit planes { Bit i , i = 1 , 2 , 3 , 4 } from 

he guidance map M norm 

as bit attention weights to implement 
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Fig. 3. The results of dividing the image into 8 bit planes. 

c

b

B

w

a

t

t

t

w  

C

3

a

f

f

t

w

3

t

g

t

S

g

o

f

c

G

o

t

b

g

B

w

t{

t

s

F

w

t

m

o

F

s

g

f

r

f

f

e

p

e

g

w

fi

ontext guidance with the global feature f g . We write the output 

it attention features B i , as follows: 

 i = f g � Bit i , (4) 

here � represents an element-wise multiplication between f g 
nd Bit i . Then, we concatenate all four bit planes with respect to 

he channel axis, which contributes to the merge of features. After 

hat, we adopt Conv blocks to generate output features f out with 

he point-wise convolution, as follow: 

f out = ψ 3 (ψ 1 ( Cat { B 1 , B 2 , B 3 , B 4 } )) (5) 

here ψ 1 (·) and ψ 3 (·) denote one 1 × 1 Conv block and one 3 × 3

onv block, respectively. 

.3. Multipath attention concat encoder and multipath concat 

ttention decoder 

Most deep learning networks for segmentation task focus on 

oreground by erasing semantic features from background, since 

oreground and background are difficult to be directly separated. To 

his end, BAM [37] proposes the bottleneck attention mechanism, 

hich combines channel attention and spatial attention to get an 

D attention. Nonetheless, this method cannot capture global con- 

extual information. 

In this subsection, we propose an SSBU module to capture 

lobal contextual information for separating background from a 

arget. Specifically, we implement SSBU through four operations: 

plit, Squeeze, Bottleneck and Union , as illustrated in Fig. 4 . 

Split and Squeeze : We divide features F in ∈ R 

H×W ×C into four 

roups of features F G ∈ R 

H×W ×C/ 4 , where H and W denote the size 

f the input features and C is the number of channels for the input 

eatures. Then, we employ the global average pooling to capture 

hannel-wise information GC of feature maps { F G s , s = 1 , 2 , 3 , 4 } : 

C = 

1 

4 

4 ∑ 

s =1 

F G s . (6) 
5 
Bottleneck : To take advantage of channel-wise information GC

btained by global average pooling, we put channel-wise informa- 

ion GC into the bottleneck attention module. That is, we use the 

ottleneck attention BA to distinguish the target from the back- 

round: 

A = BAM ( GC ) , (7) 

here BAM is the bottleneck attention module [37] . We extend 

he channel number of BA to C, and divide BA into four groups 

BA 

′ 
s , s = 1 , 2 , 3 , 4 

}
. Then we multiply BA 

′ 
s by the feature group F G s 

o obtain the final feature group F G 

′ 
s . The specific process is de- 

cribed as follows: 

 G 

′ 
s = 

4 ∑ 

s =1 

BA 

′ 
s � F G s , (8) 

here � is element-wise multiplication. 

Union : To combine the geometric context information in mul- 

iple paths, we use an union manner to aggregate all the feature- 

ap groups. Concretely, we axially connect final feature groups to 

btain the output feature F out : 

 out = Cat 
{

F G 

′ 
1 , F G 

′ 
2 , F G 

′ 
3 , F G 

′ 
4 

}
. (9) 

We propose to integrate SSBU into MACE and MCAD to repre- 

ent the globally refined feature. First, we design MACE to aggre- 

ate the low-level features from backbone. Pra-Net directly flows 

eatures from the backbone into the attention mechanism without 

educing the number of channels, which generates redundant in- 

ormation and parameters. Redundant information hinders the per- 

ormance of the network and superfluous parameters cause unnec- 

ssary time overhead during training and testing. To solve these 

roblems, we design MACE combined with SSBU and RFB [38] to 

nhance the representation ability of network features and extract 

lobal features through different sensing fields. As shown in Fig. 5 , 

e flow features from the backbone into different-sized receptive 

eld paths. We add SSBUs on every receptive field path to enable 
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Fig. 4. The architecture of our SSBU module. . 

Fig. 5. The architecture of our MACE.. 

Fig. 6. The architecture of our MCAD.. 
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ach path to get global refined features. At the same time, we de- 

ign a simple MCAD corresponding to MACE. As shown in Fig. 6 , 

e adjust features from three MACEs to the same size, and use the 

ot product operation to reduce noises in the low-level features. 

n the end, we get the final feature by aggregating all features to- 

ether through the concatenation operation. 

. Experiments 

In this section, we describe the details of implementation, com- 

are our model with the seven previous state-of-the-art models, 

nd show our ablation experiments. 

.1. Implementation details 

Baselines: We compare our BSCA-Net with fourteen medi- 

al image segmentation methods: U-Net [11] , U-Net++ [12] , Re- 

UNet [39] , ResUNet++ [13] , SFA [40] , ACS-Net [25] , Pra-Net [8] ,

hreshold-Net [24] , HarDNet-MSEG [41] , TransUnet [42] ,TransFuse- 

/L [43] , EU-Net [23] and SA-Net [9] . Among them, U-Net, U-Net++, 

esUNet and ResUNet++ are classic image segmentation methods; 

ra-Net, SFA, ACS-Net, Threshold-Net, HarDNet-MSEG, TransUnet, 

ransFuse-S/L, EU-Net and SA-Net are recently advanced polyp seg- 

entation methods. 
6 
Datasets and Training Settings: Our experiment is con- 

ucted on five datasets: CVC300 [44] , CVC-ClinicDB [45] , CVC- 

olonDB [46] , ETIS [5] and Kvasir [47] . 

Kvasir includes three important anatomical landmarks, three 

linically significant findings and two categories of images re- 

ated to endoscopic polyp removal. The size of images varies from 

32 × 487 to 1920 × 1072 . Also, the polyps in the images vary in

ize and shape. 

CVC-ClinicDB (also called CVC-612), contains 612 public polyp 

mages from 25 colonoscopy videos. The size of images is 384 ×
88 . 

CVC-ColonDB is a small training set, which contains 15 different 

olonoscopy sequences and 380 polyp images. 

CVC300 is a part of EndoScene, which also contains some im- 

ges from CVC-ClinicDB. Since the CVC-ClinicDB images are used 

o train, we only use images from CVC300 for generalization eval- 

ation of the model. 

ETIS is an early dataset containing 196 images from 34 

olonoscopy videos. The size of images is 1225 × 966 , and it is the

argest size among all five datasets. Note that, the polyps images 

n this dataset are mostly small and hard to find, which makes this 

ataset more challenging. 

To ensure the fairness of our experimental results, we fully fol- 

ow the recommendations of [8,9] . That is, we use 80% of im- 
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Table 1 

Quantitative results obtained by fifteen medical image segmentation methods for 

the learning ability evaluation on Kvasir and CVC-ClinicDB datasets. ‘-’ denotes that 

the corresponding value is not reported. 

Dataset Kvasir ClinicDB 

Dice IoU Dice IoU 

U-Net (MICCAI’15) 0.818 0.746 0.823 0.750 

U-Net + (TMI’19) 0.821 0.743 0.794 0.729 

ResUNet 0.791 - 0.779 - 

ResUNet + 0.813 0.793 0.796 0.796 

SFA (MICCAI’19) 0.723 0.611 0.700 0.607 

ACS-Net (MICCAI’20) 0.898 0.838 0.882 0.826 

Pra-Net (MICCAI’20) 0.898 0.840 0.899 0.849 

Threshold-Net (TMI’20) 0.798 0.708 0.859 0.796 

HarDNet-MSEG (arxiv) 0.912 0.857 0.932 0.882 

TransUnet (arxiv) 0.913 0.857 0.935 0.887 

TransFuse-S (MICCAI’21) 0.918 0.868 0.918 0.868 

TransFuse-L (MICCAI’21) 0.918 0.868 0.934 0.886 

EU-Net (CRV’21) 0.908 0.854 0.902 0.846 

SA-Net (MICCAI’21) 0.904 0.847 0.916 0.859 

BSCA-Net (Ours) 0.910 0.855 0.926 0.874 
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Fig. 7. The structure loss obtained by the proposed BSCA in training with different 

epoches. 
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ges in two datasets (i.e., Kvasir and CVC-ClinicDB) for training, 

0% for testing and 10% for verification. Then, we use all images 

f the other three datasets (i.e., CVC300, ETIS and CVC-ColonDB) 

or testing. To sum up, 1450 training images are selected entirely 

rom Kvasir and CVC-ClinicDB, while 798 test images are from all 

ve datasets. Before processing, we uniformly resize the images to 

52 × 352 . 

Our BSCA-Net is built in PyTorch framework. We use Adam op- 

imizer with learning rate of 1 e −4 . Each model is trained by 20

pochs and 16 batchsizes. 

Metrics and Loss Function: We use two popular metrics (mean 

ice and mean IoU) to evaluate the effect of our model. Our loss 

unction L is defined as L = L IoU + L BCE , where L BCE and L IoU are

inary cross entropy loss and intersection over union loss. We con- 

uct the deep supervision on four prediction maps, which are ob- 

ained by MCAD and BSCA, and we use the sum of four prediction 

aps as the final loss function. We also report P − v alue , which is

he probability of obtaining values at least as extreme as the ob- 

erved values of a statistical hypothesis test. P − v alue is smaller 

nd the evidence in favor of the alternative hypothesis is stronger. 

.2. Comparison with state-of-the-art methods 

In this subsection, we compare our proposed BSCA with several 

tate-of-the-Art methods on five popular datasets for polyp seg- 

entation. We report quantitative results for the learning ability 

valuation and generalization ability evaluation in Tables 1 and 2 , 

espectively. Note that, we cite all values of competing methods 

rom their literatures. We also provide all P − v alue in Table 3 , and

he information of Epoch, Learning Rate and Inference in Table 4 . 

n order to feel the convergence more intuitively, we provide the 

urve of our loss in Fig. 7 . In addition, we also show some qualita-

ive results in Fig. 8 . 

For the learning ability on two training sets, i.e., Kvasir [47] and 

VC-ClinicDB [45] , as shown in Table 1 , most of all competing 

ethods are able to achieve good scores. Here, HarDNet-MSEG, 

ransUnet, TransFuse-S/L and BSCA achieve the best values in 

ean Dice and mean IoU, where mean Dice exceeds 91% in both 

atasets. 

To evidence the applicability of all methods, we use three train- 

ng sets: CVC300, CVC-ColonDB and ETIS. As shown in Table 2 , the 

est result of our network is better than the current networks for 

hree datasets. Compared to the most advanced models, all metrics 

f BSCA-Net are improved by 4% average. At the same time, the 

ean Dice for CVC300 dataset reaches 92 . 7% . This can show that
7 
ur model has better generalization ability than other methods for 

olyp segmentation. 

At the same time, we provide P − v alue in Table 3 . When we

et the confidence intervals to 95% , all P − v alue are less than

.05. This can show that the proposed approach is an efficient 

trategy for polyp segmentation. 

As shown in Table 4 , we present the epoch, learning rate 

nd inference time of BSCA-Net and current SOTA approaches. 

ote that, BSCA-Net is faster than TransFuse-L and slower than 

ransFuse-S, but BSCA-Net’s score is higher than TransFuse-S and 

ower than TransFuse-L. Therefore, we believe that the three net- 

orks have their own advantages in inference speed and accuracy. 

imultaneously, Our network converges when training closes to 20 

pochs. We reduce the number of channels from 2048 to 64 when 

he backbone features are streamed into the MACE, which helps 

ur network to be trained quickly. Comparing to prior CNN-based 

ethods, our BSCA-Net using only 24.07M parameters, less then 

arDNet-MSEG (33.3M) and TransFuse-S (26.3M). Moreover, the 

ACs (Multiply Accumulate Operations) of our method is 1 . 1 e 10 , 

nd it is also less then and TransFuse-S ( 1 . 2 e 10 ). This can show the

ffectiveness of our proposed method. 

From Fig. 7 , we can see that our network converges only af- 

er several training epochs, since our network can backpropagate 

he loss to earlier layers (red flow in Fig. 1 ). We also can see that

oth the training loss (green line) and the validation loss (red line) 

onverge after several epochs, which means our network does not 

ave the problem of overfitting. 

It is worth pointing out that, our BSCA-Net is able to achieve 

he final results within about 74 F P S on RT X 2080 T i GP U , which

uarantees that BSCA-Net can be used for colonoscopy video. 

Qualitative Results: To show our model intuitively, we provide 

esults of our model on different testing sets, and we compare test- 

ng results with three representative advanced models. As shown 

n Fig. 8 , for the input image in the first line, other three networks

roduce blurred edges due to the loss of boundary information; for 

he input image in the second and third lines, the size of polyps is 

oo small and the color of polyps is similar to the surrounding tis- 

ues, resulting in the ignorance of the boundary information from 

he deep features; for the input image in the last line, there are 
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Table 2 

Quantitative results obtained by thirteen medical image segmentation methods for the generalization ability 

evaluation on CVC-ColonDB, CVC-300 and ETIS datasets. 

Dataset ColonDB CVC300 ETIS 

Dice IoU Dice IoU Dice IoU 

U-Net (MICCAI’15) 0.512 0.444 0.710 0.627 0.398 0.335 

U-Net + (TMI’19) 0.483 0.410 0.707 0.624 0.401 0.344 

SFA (MICCAI’19) 0.469 0.347 0.467 0.329 0.297 0.217 

ACS-Net (MICCAI’20) 0.716 0.649 0.863 0.787 0.578 0.509 

Pra-Net (MICCAI’20) 0.709 0.640 0.871 0.797 0.628 0.567 

Threshold-Net (TMI’20) 0.788 0.720 0.897 0.824 0.587 0.640 

HarDNet-MSEG (arXiv) 0.731 0.660 0.887 0.821 0.677 0.613 

TransUnet (arXiv) 0.781 0.699 0.893 0.824 0.731 0.660 

TransFuse-S (MICCAI’21) 0.773 0.696 0.902 0.833 0.733 0.659 

TransFuse-L (MICCAI’21) 0.744 0.676 0.904 0.838 0.737 0.661 

EU-Net (CRV’21) 0.756 0.681 0.837 0.765 0.687 0.609 

SA-Net (MICCAI’21) 0.753 0.670 0.888 0.815 0.750 0.654 

BSCA-Net (Ours) 0.783 0.720 0.927 0.875 0.768 0.714 

Table 3 

All P − v alue for the scores in BSCA-Net. 

Dataset Kvasir ClinicDB ColonDB CVC300 ETIS 

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU 

scores 0.910 0.855 0.926 0.874 0.783 0.720 0.927 0.875 0.768 0.714 

P − v alue 0.004 0.015 0.011 0.021 0.014 0.022 0.031 0.011 0.002 0.004 

Fig. 8. Qualitative results obtained by Pra-Net, Threshold-Net, SA-Net and our BSCA-Net, on four benchmarks. 

Table 4 

The comparison of epoch, learning rate and inference in different networks. We 

provide each network’s score on CVC-ClinicDB for comparison of each network. 

Method Epoch Learning Rate Inference Mean Dice 

U-Net (MICCAI’15) 30 3 e −4 8 fps 0.823 

U-Net + (TMI’19) 30 3 e −4 7 fps 0.794 

SFA (MICCAI’19) 500 1 e −2 40 fps 0.700 

ACS-Net (MICCAI’20) 150 1 e −3 - 0.882 

Threshold-Net (TMI’20) 500 1 e −3 8 fps 0.859 

HarDNet-MSEG (arXiv) 100 1 e −2 - 0.932 

TransFuse-S (MICCAI’21) 30 1 e −4 98 fps 0.918 

TransFuse-L (MICCAI’21) 30 1 e −4 68 fps 0.934 

SA-Net (MICCAI’21) 128 4 e −2 72 fps 0.916 

BSCA-Net (Ours) 20 1 e −4 74 fps 0.926 
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bjects like bubble at the top right of polyps. Due to the lack of 

imilar examples in the training process, other methods regard the 
8 
bject like bubble as the polyp. Other advanced methods have the 

ame problem, and our BSCA-Net aims to address the problem. Our 

etwork is able to pay more attention to the boundary information 

etween polyps and the surroundings by exploiting bit-plane slic- 

ng technology. We visualize four bit planes for BSCA-Net at the 

ame time. 

.3. Ablation study 

In this section, we show the necessity of each module in the 

etwork in the form of ablation experiment. 

Proof of module effectiveness: To investigate the importance 

f our modules, we perform experiments for each module on the 

VC300 and CVC-ClinicDB datasets. As shown in Table 5 , each 

odule has a positive impact on the final structure of the network. 

ombining each module together allows our network to achieve 

he state-of-the-art performance. 
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Table 5 

The comparison of BSCA with different modules on CVC300 and CVC-ClinicDB 

datasets. 

Backbone BSCA MACE MCAD CVC300 ClinicDB 

Dice IoU Dice IoU 

√ 

- - - 0.726 0.631 0.747 0.668 √ √ 

- - 0.864 0.788 0.913 0.861 √ √ √ 

- 0.893 0.828 0.916 0.865 √ √ √ √ 

0.927 0.875 0.922 0.872 

Table 6 

The impact of SSBU module on the network. (not SSBU) represents BSCA with- 

out the SSBU modules and G represents the number of split feature-map groups 

in SSBU. 

Dataset BSCA-Net Dice IoU 

ClinicDB (not SSBU) 0.910 0.858 

G = 1 0.907 0.849 

G = 2 0.919 0.867 

G = 4 0.922 0.872 

ETIS (not SSBU) 0.707 0.637 

G = 1 0.706 0.633 

G = 2 0.742 0.689 

G = 4 0.768 0.714 

Table 7 

Ablation experiments obtained by BSCA-Net with different numbers of bit 

planes in CVC300. X represents the number of bit planes. 

X = 2 X = 3 X = 4 X = 5 

Dice IoU Dice IoU Dice IoU Dice IoU 

0.882 0.810 0.900 0.843 0.927 0.875 0.912 0.847 
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Effectiveness of Bit Slicing Context Attention: We investigate 

he effect of the BSCA module. The results are in the first and 

econd columns of Table 5 . We observe that BSCA improves the 

erformance of backbone: for CVC300 dataset, BSCA improves the 

ean IoU from 63 . 1% to 78 . 8% ; for CVC-ClinicDB dataset, BSCA im-

roves the mean IoU from 66 . 8% to 86 . 1% . These improvements in-

icate that the introduction of BSCA is able to help our network 

ccurately distinguish polyps from the input images. 

Effectiveness of MACE: We investigate the importance of 
Fig. 9. Qualitative results of com

9 
ACE. As shown in the second and third columns of Table 5 . Based

n BSCA, MACE improves mean Dice and mean IoU on the CVC300 

ataset by 2 . 9% and 4% , respectively. This result shows that MACE 

s effective for improving network performance. Note that, at the 

nd of MACE, we reduce the number of channels, which also en- 

ures that our network does not incur excessive time overhead. 

Effectiveness of MCAD: We further investigate the role of the 

ascaded mechanism (MCAD), the results are shown in the third 

nd fourth rows of Table 5 . On the CVC300 dataset, mean Dice and

ean IoU are improved to 92 . 7% and 87 . 5% , respectively. These

wo data are current state-of-the-art results for polyp segmenta- 

ion tasks. At the same time, MCAD also brings an improvement 

n the metrics of the CVC-ClinicDB dataset. In short, the cascaded 

echanism is essential for increasing performance. 

Effectiveness of SSBU module: To demonstrate the validity of 

SBU module, we design a new encoder and decoder whose spe- 

ific architecture is identical to MACE and MCAD except for SSBU 

odule. We experiment with the new encoder and decoder on 

VC-ClinicDB and ETIS datasets. As shown in Table 6 , the SSBU 

odule has a stable improvement for each metric, since the SSBU 

odule provides effective access to 3D attention features and rich 

ontextual information through Split and Union operations. The re- 

ults show that the SSBU module is a good module in encoder and 

ecoder. We test the performance of BSCA-Net with different num- 

ers of split feature-map groups, and report the results in Table 6 . 

t G = 4 , our network achieves the best results on four metrics. On

TIS datasets, BSCA-Net with G = 4 improves at least 6% on ETIS 

ver the version with G = 1 . 

Effectiveness of Bit Planes: We demonstrate the relationship 

etween the number of planes X obtained after bit-plane slicing 

nd network performance. As shown in Table 7 , we place the ex- 

eriment on CVC300. We make five ablation experiments from 2 

ayers to 6 layers. When the number of layers is 4, BSCA achieves 

he best performance because the top four bit planes already con- 

ain the most of the key information in the image. 

To illustrate the effectiveness of BSCA, we also visualize differ- 

nt bit planes in BSCA. As shown in Fig. 9 , bit plane slicing technol-

gy is able to distinguish the foreground from background through 

igh-level bit planes, and find some fuzzy areas that may be diffi- 

ult to distinguish from mucosa and colon surface. For most polyp 

mages, we can segment most of the foreground and background 

hrough the first two bit planes. For some polyp images with high 

imilarity between background and polyps, plane 3 and 4 are able 

o notice more detailed pixel changes to obtain the boundary in- 

ormation of polyps. This also shows that selecting the highest four 

it planes as the attention is able to improve the effect better com- 

ared with other bit planes. 
parison with Bit Slicing. 
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. Conclusion 

In this paper, we propose the Bit-Slicing Context Attention Net- 

ork (BSCA-Net), to augment the extraction ability of boundary 

nformation for accurate polyp segmentation. Specifically, we first 

esign a novel Bit-Slicing Context Attention mechanism, which 

xploits the bit-plane slicing information to further capture the 

oundary information from global feature maps through high 

it-plane learning, for addressing the difficulty of extracting the 

oundary between polyps and the surrounding tissues. Then, to 

nhance a comprehensive understanding of the input features, we 

ropose the SSBU module to capture contextual and geometric in- 

ormation in features. After that, we propose an multipath con- 

at attention decoder (MCAD) and an multipath attention concat 

ncoder (MACE), to further improve the network performance for 

olyp segmentation. Both qualitative and quantitative results reveal 

hat the proposed BSCA-Net is able to achieve the salient improve- 

ent over existing methods on five typical datasets (Kvasir, CVC- 

linicDB, ETIS, CVC-ColonDB and CVC-300). We hope that the de- 

elopment of polyp segmentation can be further promoted through 

his work. 
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