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Abstract
In this paper, we propose a novel continuous latent semantic analysis fitting method, to efficiently and effectively estimate the
parameters of model instances in data, based on latent semantic analysis and continuous preference analysis. Specifically, we
construct a new latent semantic space (LSS): where inliers of different model instances are mapped into several independent
directions, while gross outliers are distributed close to the origin of LSS. After that, we analyze the data distribution to
effectively remove gross outliers in LSS, and propose an improved clustering algorithm to segment the remaining data points.
On the one hand, the proposed fitting method is able to achieve excellent fitting results; due to the effective continuous
preference analysis in LSS. On the other hand, the proposed method can efficiently obtain final fitting results due to the
dimensionality reduction in LSS. Experimental results on both synthetic data and real images demonstrate that the proposed
method achieves significant superiority over several state-of-the-art model fitting methods on both fitting accuracy and
computational speed.

Keywords Latent semantic analysis · Preference analysis · Geometric model fitting · Multi-structure data

1 Introduction

Geometric model fitting is one of the most challenging tasks
in computer vision, and it has been applied to several types
of computer vision tasks, such as, homography/fundamental
matrix estimation (Xiao et al. 2019), vanishing point detec-
tion (Lee andYoon 2019), 3D reconstruction (Yang andMeer
2020), and motion segmentation (Xu et al. 2019). One of the
main challenges in model fitting is to robustly estimate the
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model parameters for data involving a large number of out-
liers and multiple structures.

1.1 Background

1.1.1 Several Primary Definitions

Wefirstly provide some definitions inmodel fitting to address
the model fitting problem.

A geometric model is usually specified before model fit-
ting. Several popular geometric models have been used, such
as, line, circle, homography/fundamental matrix, etc. Once
a type of geometric model is specified, one can explain data
with the model.

Amodel instance (also called a structure) is an instance of
the specified type of model in the data. Multi-structural data
contain multiple model instances.

A minimal subset is the minimum number of data points
that are required generating a model hypothesis, e.g., 2 data
points for line fitting, 4 data points for homography fitting.

A model hypothesis is generated based on each min-
imal subset. The subset is sampled using different types
of sampling strategies. For data with outliers, many model
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hypotheses are usually required being generated to estimate
the model instances in data.

Based on the above definitions, the model fitting problem
can be described as: Given a set of input data points and a
specified type ofmodel, the goal is to estimate the parameters
of model instances that best explain the input data (Wu et al.
2008; Le et al. 2019; Meer 2020; Ma et al. 2021).

Generally, there are two steps included in the model fit-
ting procedure: (1) Sample a number of minimal subsets to
generate a set of model hypotheses; (2) Estimate the param-
eters of model instances according to the generated model
hypotheses by model selection.

Some methods have been proposed to improve either
the quality of sampling [e.g., Proximity (Kanazawa and
Kawakami 2004), PROSAC (Chum and Matas 2005),
MultiGS (Chin et al. 2012) and MAGSAC (Barath et al.
2019, 2020)) or the performance of model selection (e.g.,
HMSS (Tennakoon et al. 2016) and RansaCov (Magri and
Fusiello 2016)].

In this paper, we mainly focus on both the effectiveness
and computational efficiency of model selection.

1.1.2 Prior Work

Existing fitting methods can be roughly classified into two
categories, i.e., the consensus analysis based and the prefer-
ence analysis based fitting methods. The consensus analysis
based fitting methods [e.g., RANSAC (Fischler and Bolles
1981), RansaCov (Magri and Fusiello 2016), RHT (Xu et al.
1990), GPbM (Mittal et al. 2012), AKSWH (Wang et al.
2012) and MSHF (Wang et al. 2019)] directly select model
instances from a number of generated model hypotheses
according to some evaluation criterions (such as, the number
of inliers or the weighting scores of model hypotheses), and
then segment data points according to the user-specified or
estimated inlier noise scale.

Among theses methods, RANSAC is one of the most pop-
ular fitting methods due to its simplicity and robustness to
outliers. The main steps of RANSAC are described as fol-
lows:

– Randomly sample a number of minimal subsets of
data points and then generate the corresponding model
hypotheses.

– Select themodel hypothesis that includes themaxnumber
of inliers as the estimated model instance.

RANSAC is simple yet robust. However, it suffers from sev-
eral limitations. For example, it requires randomly sampling a
large number ofminimal subsets formodel hypothesis gener-

ation to “hit”1 a model instance in data with high proportions
of outliers. However, most of the sampled minimal subsets
are not significant (i.e., most of the sampled minimal subsets
include outliers). This will cause high computational com-
plexity, especially for high dimensional models. Moreover,
RANSAC sequentially selects the best model hypothesis as
the estimated model instance for multi-structural data via a
“fit-and-remove” framework, which is not very effective and
computationally efficient (Wang et al. 2012).

To improve the fitting performance, RansaCov formu-
lates the model fitting problem as a problem of set coverage
and it searches for the best sets that include the maximum
number of inliers. RHT (Xu et al. 1990) assigns each gen-
erated model hypothesis a score, and then selects the model
hypothesis with the maximum score as the estimated model
instance. GPbM (Mittal et al. 2012) formulates the model
fitting problem as an optimization problem. AKSWH (Wang
et al. 2012) directly clusters the generated model hypotheses,
and then selects the model hypothesis with the maximum
weighting score from each cluster as an estimated model
instance. MSHF (Wang et al. 2019) combines hypergraphs
and mode-seeking to directly select model hypotheses as the
estimated model instances according to their weight scores
and a similarity matrix. Although these fitting methods are
not very sensitive to data distribution (i.e., their performance
is relatively less affected by unbalanced data distribution),
their fitting performance largely depends on the quality of
the generated model hypotheses.

The preference analysis based fitting methods [e.g.,
SWS (Purkait et al. 2017), HF (Xiao et al. 2016), RPA (Magri
and Fusiello 2017), J-linkage (Toldo and Fusiello 2008), T-
linkage (Magri and Fusiello 2014) and MCT (Magri and
Fusiello 2019)] estimate model instances by labeling data
points based on the generated model hypotheses. Specif-
ically, SWS (Purkait et al. 2017) adopts large hyperedges
to represent the relationship between model hypotheses and
data points formodel fitting. HF (Xiao et al. 2016) introduces
a novel hypergraph model to formulate the model fitting
problem as a hypergraph partition problem. RPA (Magri
and Fusiello 2017) combines principal component anal-
ysis and non negative matrix factorization to deal with
multi-structure model fitting. J-linkage (Toldo and Fusiello
2008)/T-linkage (Magri and Fusiello 2014) directly cluster
data points according to their preference sets. MCT (Magri
and Fusiello 2019) extends T-linkage to handle different
nested classes of models.

Moreover, there are also some energy-based model fitting
methods, e.g., PEaRL (Isack and Boykov 2012),
RCMSA (Pham et al. 2014) and CORAL (Amayo et al.

1 That is, among the generated model hypotheses, there is at least one
model hypothesis (generated by a minimal subset) corresponding to a
true model instance in data.
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2018). We can see that, most of the currently existing fit-
ting methods estimate the fitting results from the residual
matrix, which is derived from model hypotheses and data
points. However, to cover all model instances in data, they
often require sampling a large number of model hypotheses.
Then, thefittingmethodsmay suffer fromhigh computational
complexity when they compute the similarities between all
data points, especially for large-size data.

1.2 Motivations and Contributions

In this paper, we propose a continuous latent semantic analy-
sismethod (called asCLSA) for robustmulti-structure fitting.
We aim to exploit the advantage of preference analysis (that
is able to achieve good fitting accuracy) and yet reduce the
high computational complexity of multi-structural model fit-
ting by applying latent semantic analysis (LSA) (Deerwester
et al. 1990) on data points (involving a large number of out-
liers). Note that LSA is a valuable analysis tool, which was
originally used to construct a low-dimensional subspace by
analyzing the relationships between a set of documents and
terms for word processing, to effectively reduce the dimen-
sions ofword-document count vectors. Inspired by thatwork,
we construct a new low-dimensional latent semantic space
(LSS), to analyze the relationships among data points, by
both LSA and continuous preference analysis (CPA)2 imple-
mented by T-linkage (Magri and Fusiello 2014), for solving
the model fitting problem.

It is worth pointing out that the combination of LSA and
CPA is an important improvement over either LSA or CPA.
That is, for LSA, CPA can capture more accurate relation-
ships between model hypotheses and data points (note that
LSA has no notion of these). For CPA, LSA can be used to
reduce the high dimension of a preference matrix generated
by CPA while keeping its principal preference information.
Thus, both LSA and CPA jointly lead to better fitting per-
formance and higher computational efficiency. To the best of
our knowledge, we are the first to exploit the relationships
between data points and model hypotheses via both LSA and
CPA, for robust multi-structure model fitting.

Moreover, we analyze the constructed LSS to remove
gross outliers, and cluster the remaining data points into
independent directions in LSS. Note that there usually are
two kinds of outliers, i.e., gross outliers and pseudo out-
liers in data points. Gross outliers are the data points that
do not belong to the inliers of any model instance in data;
while pseudo outliers are the data points that belong to the
inliers of one model instance, but they are the outliers to
the other model instances in data. In our work, we aim to
effectively remove gross outliers and cluster/segment inliers
(belonging to different model instances) in LSS. Firstly, we

2 CPA is a soft generalization of the binary preference analysis.

adaptively set a threshold based on an information theoretic
approach (Ferraz et al. 2007) to remove gross outliers in LSS.
Then, by analyzing the distribution of the remaining data
points in LSS,we cluster these points into different directions
via an improved clustering algorithm. Note that, in LSS, the
high-order model fitting problem (e.g., homography estima-
tion and two-view based motion segmentation) is formulated
as a simple clustering problem, which is much easier to deal
with.

We show the overview of the proposed CLSA method
applied to two-view based motion segmentation in Fig. 1. In
Fig. 1b, a preference matrix, whose entries are the preference
values of data points tomodel hypotheses, and the key step of
continuous latent semantic analysis are shown. From Fig. 1c,
we can see that, each of the input feature matches is mapped
to a point in LSS by the proposed method. In LSS, the points
corresponding to the inliers and gross outliers are distributed
differently. That is, the points corresponding to the gross out-
liers are distributed close to the origin ofLSS,while the points
corresponding to the inliers of different model instances are
distributed in their respective directions and they are far from
the origin of LSS (see Fig. 1d). After removing the gross out-
liers from the input data, the complex model fitting problem
becomes a much easier clustering problem, which can be
solved in an effective and efficient manner (see Fig. 1e).

In this paper we are primarily concerned with proposing
a model fitting method to segment data. In model fitting, one
tries to jointly determine both the parameters of the underly-
ing models, and the segmentation induced by the assignment
of data to the models they fit. Since our main aim is to seg-
ment the data, the accuracy of the estimated model instances
is only a means to an end. In contrast, for model extrac-
tion/estimation, the accuracy of concern is that of the model
parameter estimates, not the induced segmentation per se.
Despite the focus of this work on segmentation, the ideas
could also be used in areas where the model parameters are
more of interest but that is beyond the scope of this paper.

The key contributions of this work are summarized as
follows:

– We propose a way to analyze the complex relationships
between data points and model hypotheses by exploiting
the advantage of both latent semantic analysis and con-
tinuous preference analysis, to improve the performance
on both segmentation accuracy and computational effi-
ciency for robust model fitting.

– We propose an adaptive gross outlier removal strategy
in the new latent semantic space, where inliers and gross
outliers are separately distributed. Then we formulate the
complex model fitting problem as a simple clustering
problem on the remaining data without gross outliers.

– We improve a traditional clustering method (MacQueen
1967) by introducing a preference function to effectively
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Fig. 1 Overview of the proposed method for two-view based motion segmentation

seed the initial centers, which achieves more stable clus-
tering results for the task of model fitting.

Our experimental evaluations and comparisons demon-
strate the significant superiority of the proposed method over
several state-of-the-art geometric model fitting methods for
different model fitting tasks.

The rest of the paper is organized as follows: We describe
the components of the proposed fitting method in Sect. 2.
We summarize the complete method in Sect. 3. We present
the experimental results on both synthetic and real data in
Sect. 4. We discuss the proposed method in Sect. 5 and draw
conclusions in Sect. 6.

2 TheMethodology

In this section, we describe the details of the proposed contin-
uous latent semantic analysis fitting method (called CLSA).
We first describe the problem formulation in Sect. 2.1,
and then review the background of latent semantic analysis
(LSA) (Deerwester et al. 1990) (Sect. 2.2).We then construct
a novel latent semantic space by LSA and the continuous
preference analysis (CPA) in Sect. 2.3. After that, we ana-
lyze the data distribution in the constructed latent semantic
space, and then propose an adaptive gross outlier removal
strategy (Sect. 2.4). Then we propose an improved clustering
algorithm to segment the remaining data points (Sect. 2.5).

2.1 Problem Formulation

Given a set of data points X = {x1, . . . , xn} and a set of
model hypotheses Θ = {θ1, . . . , θn} generated by sampling,
we define the preference function (Magri and Fusiello 2014),
which represents the preference of a data point xi to a model
hypothesis θ j , as follows:

f (xi , θ j ) = exp

{
−d(xi , θ j )

ψ

}
, (1)

where d(xi , θ j ) denotes the residual value measured with
the Sampson distance (Torr and Murray 1997) from a data
point xi to a model hypothesis θ j . ψ is a threshold (and the
influence of its value on the proposedCLSAwill be discussed
with more details in Sect. 4.1).

ByusingEq. (1),we compute the preferencematrix,which
is used to estimate the parameters of model instances in
the data. Then, we also segment input data points belong-
ing to different model instances into different groups. The
cost function is defined as Magri and Fusiello (2016), Mittal
et al. (2012):

SE = # mislabeled data points

# data points
, (2)

where # mislabeled data points is the number of mislabeled
data points, and # data points is the number of input data
points. Note that, if the estimated model instance is close
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to the true model instance, the value of SE will be small;
Otherwise, the value of SE will be large.

2.2 Latent Semantic Analysis (LSA)

Latent semantic analysis (LSA) was proposed to analyze a
binarymatrix of documents/terms, via singular value decom-
position (SVD), for document representation.

Specifically, given documents Do = {do1, . . . , don}with
terms T e = {te1, . . . , tem}, generate a binary matrix TD,
which denotes the relationship between documents and terms
(i.e., td(i, j) = 1 if the i-th document belongs to j-th term;
Otherwise, td(i, j) = 0). The key idea of LSA is to map
documents to a latent space, where documents are close if
they share meaningful association, based on TD by SVD.

LSA firstly decomposes TD by SVD as follows:

TDn×m = U�VT , (3)

where U and V are the orthogonal matrices of left and right
singular vectors UUT = VVT = I (here I is an identity
matrix), respectively. � = diag(σ1, . . . , σr ) is a diagonal
matrix with singular values on the diagonal and the singular
values are listed in non-increasing order, i.e., σ1 ≥ σ2 ≥
· · · ≥ σr > 0, r = rank(TD).

ThenTD is approximately computed by the top k singular
values in �, i.e.,

TD = T̃D ≈ Un×rk�rk×rkV
T
m×rk , (4)

where rk is the number of considering rank(TD). After that,
LSA uses the rows of Un×rk�rk×rk as the coordinates for
documents in the latent space. This is because the document-
to-document inner products are given by:

T̃DT̃D
T = Un×rk�rk×rk V

T
m×rkVm×rk︸ ︷︷ ︸

I

UT
n×rk�rk×rk . (5)

Based on the latent space, LSA is able to effectively analyze
the relationship between documents.

2.3 Latent Semantic Space Construction

Inspired by LSA, we propose to analyze an inlier indexing
matrix (generated by considering both data points and model
hypotheses) via SVD for the model fitting problem. A binary
inlier indexing matrix is used to represent the relationship
between data points and model hypotheses. Here, we use
a continuous preference matrix (Magri and Fusiello 2014)
(derived from a preference function) instead of a binary one
to improve its fitting performance.

For n input data points andm generatedmodel hypotheses,
a singular value decomposition of a continuous preference

matrix Fn×m (each entry is derived from Eq. (1)) has the
following form:

Fn×m = U�VT , (6)

i.e.

⎡
⎢⎣
f (x1, θ1) · · · f (x1, θm)

...
. . .

...

f (xn, θ1) · · · f (xn, θm)

⎤
⎥⎦

= [[
u1

] · · · [
ur

]] ·
⎡
⎢⎣

σ1 · · · 0
...

. . .
...

0 · · · σr

⎤
⎥⎦ ·

⎡
⎢⎣

[
v1

]
...[
vr

]

⎤
⎥⎦ (7)

Recall that, a preference matrix denotes the preference
between data points and model hypotheses. Specifically, if
the value of f (xi , θ j ) is large, it means that the data point xi
prefers the model hypothesis θ j . Thus, after decomposition
by SVD, a left singular vector ui denotes the preference of
all data points to the i-th topic model of model hypotheses. A
topic model is a estimated model instance for model fitting.
Accordingly, a right singular vector v j denotes the preference
of allmodel hypotheses to the j-th topicmodel of data points.

Each singular value σi denotes the strength of correla-
tion between a data point and a model hypothesis. That is,
if the σi value is large, then it is a high possibility that the
i-th topic model of data points and the i-th topic model of
model hypotheses correspond to the same model instance in
data; Otherwise, the i-th topic model of data points and the
i-th topic model of model hypotheses are usually insignifi-
cant and thus they can be ignored. This is because an inlier
and the corresponding model instance have much stronger
correlation than the other cases. Therefore, we only need to
analyze the top rk data points and model hypotheses instead
of analyzing all data points andmodel hypotheses. Here, rk is
usually set to a small value, i.e., rk � r (we also further dis-
cuss its influence in Sect. 4.1). Thus, Eq. (6) can be rewritten
as:

Fn×m = F̃n×m ≈ Un×rk�rk×rkV
T
m×rk . (8)

Eq. (8) is also consistent with the property of SVD that the
top 10% (even 1%) of singular values account for over 99%
of all singular values.

Then, to simplify the complex model fitting problems,
we construct a latent space where the data points belonging
to the same model instance (these data points share similar
preference to the same model hypothesis) are close to each
other. That is, the value of a data point xi in the constructed
space only relates to the left singular vectors and has nothing
with the origin value of xi . Herewe call the constructed space
the “latent semantic space (LSS)”, because the space involves
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the latent semantic information (the inliers belonging to the
same model instance in the data usually correspond to the
mapped points in one direction of LSS).

Note that the points-to-points inner products based on
Eq. (8) are given by:

˜̃Fn×n = F̃n×m F̃
T
n×m

= Un×rk�
2
rk×rkU

T
n×rk . (9)

Now, we have a n × n matrix ˜̃F to determine singular val-
ues � and left singular vectors U. Thus, we use the rows of
Un×rk�rk×rk as defining coordinates for data points in LSS.

After that, we no longer analyze the preference matrix but
LSS, and the dimension is reduced from a large m value of a
preferencematrix to amuch smaller rk value of LSS. It is also
worth pointing out that, the value of each data point in LSS
has its specific physical interpretation. That is, the value of a
data point xi in the j-th dimension of LSS corresponds to the
preference of xi to the j-th topic model of model hypotheses.
Thus, the complexmodel fitting problem is reduced to amuch
easier LSS analysis problem.

2.4 Adaptive Outlier Removal

Based on the constructed LSS, we propose a novel simple
but effective outlier removal strategy in this subsection.

In LSS, a data point xi corresponding to an inlier is
assigned a large value in a direction (which means the data
point is distributed far from the origin of LSS), while xi cor-
responding to a gross outlier is assigned a small value. The
reason behind this is that, the value of xi in the j-th dimen-
sion of LSS corresponds to the preference of xi to the j-th
topic model of model hypotheses. Obviously, a topic model
of model hypotheses prefers xi if it is an inlier while not any
topic model of model hypotheses prefers xi if it is a gross
outlier. Thus, in LSS, the points corresponding to inliers of
model instances are distributed in several independent direc-
tions while the points corresponding to gross outliers are
distributed close the origin (O) of LSS. That is, the points
corresponding to inliers are far from the origin O while the
points corresponding to gross outliers are close to O. Thus,
we remove the points corresponding to gross outliers by using
a threshold, according to the distance between the mapped
points and O in LSS. However, it is difficult to manually set
a proper threshold value for different input data.

In this paper, we propose to use information theory (Fer-
raz et al. 2007) to adaptively set the threshold value for
outlier removal. Firstly, given a set of mapped points X̂ =
{x̂i }i=1,...,n in LSS, we compute the Euclidean distance d̂ox̂i
between each mapped point x̂i andO in LSS. Then, we com-
pute the gap gi between d̂ox̂i and the maximum distance of
the mapped points to O as:

gi = max{Do} − d̂ox̂i , (10)

whereDo = {d̂ox̂i }i=1,...,n . After that, wemeasure the quantity
of information provided by each mapped point x̂i :

Q(x̂i ) = − log p(x̂i ), (11)

where p(x̂i ) is the prior probability of each mapped point x̂i
to correspond to an outlier, and it is computed by normalizing
the gap:

p(x̂i ) = gi
/ n∑

i=1

gi . (12)

The corresponding entropy is computed as:

L = −
n∑

i=1

p(x̂i ) log p(x̂i ). (13)

We remove the mapped points with quantity of informa-
tion lower than the estimated entropy value L and retain the
points with quantity of information higher than the entropy
value L:

X̂I = {xi |Q(x̂i ) > L}. (14)

To illustrate the outlier removal strategy, in Fig. 2, we
show an example of outlier removal (based on our infor-
mation theoretic approach) for homography estimation on
the “Elderhalla” image pair. We can see that, inliers are
assigned a large quantity of information while gross outliers
are assigned a smaller quantity of information (see Fig. 2b).
The proposed outlier removal strategy successfully distin-
guishes the mapped points in LSS (see Fig. 2c, d).

It is worth pointing out that, although Wang et al. (2012)
and Wang et al. (2019) and the proposed outlier removal
strategy in this paper, use information theory similar to that
in Ferraz et al. (2007) to improve the fitting performance, they
are significantly different in that: (1) They deal with different
objects, i.e., the proposed strategy in this paper uses informa-
tion theory to remove gross outliers from all data points while
(Wang et al. 2012, 2019) use it to remove insignificant model
hypotheses from all generated model hypotheses; (2) They
work in different spaces, i.e., the proposed strategy works in
LSS while (Wang et al. 2012, 2019) work in the parameter
space.

2.5 Inlier Segmentation

The constructed latent semantic space is well approximated
by multiple low-dimensional spaces. Thus, after removing
the points corresponding to gross outliers (those with high
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Fig. 2 An example of outlier removal based on the information the-
oretic approach for homography estimation. a The input “Elderhalla”
image pair. b The proposed outlier removal strategy. c The estimated

inliers. d The removed gross outliers. The gross outliers are marked
in blue, and the inliers of different model instances are marked in red.
(Color figure online)

probabilities in LSS), we propose to cluster the remaining
mapped points, where each cluster corresponds to a model
instance and the corresponding data points are the inliers
of the model instance. From the distribution of the mapped
points in LSS (see Fig. 1d), we can see that the points belong-
ing to different clusters have obvious discrimination. The
reason behind this is that, the inliers belonging to the same
model instance, i.e., the same topic model of model hypothe-
ses, will prefer the same directions in LSS. Thus, we can
use a clustering method [e.g., K-means (MacQueen 1967),
DBSCAN (Ester et al. 1996) and Clusterdp (Rodriguez and
Laio 2014)] to cluster the remaining points in LSS. How-
ever, these clustering methods have some limitations, e.g.,
K-means is sensitive to the selection of the initial centers;
for DBSCAN and Clusterdp, it is difficult to set their param-
eters for different input data.

In this paper, we follow the idea of K-means++ (Arthur
andVassilvitskii 2007),which improvesK-meansby employ-
ing a novel technique for seeding the initial centers. Specifi-
cally, we propose a new way of seeding the initial centers for
K-means by introducing the preference function (seeEq. (1)).
Wemeasure the similarity between two points (x̂i , x̂ j ) in LSS
based on their Tanimoto distance (Tanimoto 1957):

s(x̂i , x̂ j ) = 1 − 〈PSi , PS j 〉
‖PSi‖2 + ‖PS j‖2 − 〈PSi , PS j 〉 , (15)

where PSi and PS j are the preference sets of the data points
x̂i and x̂ j for all model hypotheses3. 〈·, ·〉 and ‖ ·‖ denote the

3 The elements of the preference set PSi are computed according to
the preference function f (·) in Eq. (1), based on the corresponding data
point xi and all the generatedmodel hypotheses. Similarly, the elements
of PS j can be computed.
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Fig. 3 Two examples of the distance distribution between an inlier and
the other data points (i.e. the other inliers and the pseudo outliers) based
on the Euclidean distance (Left) and the Tanimoto distance (Right) for
two model fitting tasks

standard inner product and the corresponding induced norm,
respectively.

Compared with the Euclidean distance, the Tanimoto dis-
tance is much more robust to the distribution of data points,
for our case. Note that, if two data points share similar prefer-
ence to model hypotheses, then their Tanimoto distance will
be a small value; Otherwise, their Tanimoto distance will be
a large value. In Fig. 3, we show two examples of the dis-
tance distribution between an inlier and the other data points
(including the other inliers and the pseudo outliers) based on
the Euclidean distance and the Tanimoto distance on the “6
lines” data and the “Unihouse” data, respectively.We can see

123



International Journal of Computer Vision (2021) 129:2034–2056 2041

Algorithm 1 The K-means*++ Clustering Algorithm

Input: Data points X̂ , the number of model instances k
1: Select one center c1 randomly from the input data points in LSS and

add it to the center pool.
2: Compute the Tanimoto distance (referred to as T-distance) between

all data points and the centers in the center pool by Eq. (15).
3: Select the data point with the maximum T-distance as a new center

and add it to the center pool.
4: Repeat Steps 2 to 3 until k centers are selected.
5: Proceed with the standard K-means algorithm (MacQueen 1967) to

obtain the labels of data points.
Output: The labels of data points X̂ .

that, many pseudo outliers have the same distance as inliers,
when the Euclidean distance is used; while only a few pseudo
outliers share the same distance with inliers, when the Tan-
imoto distance is used. Thus, the Tanimoto distance is able
to more effectively capture the distance between inliers from
the same model instance than the Euclidean distance, and
we employ the Tanimoto distance, rather than the Euclidean
distance, in the proposed fitting method.

Then, based on the similarity, we seed the centers from
data points, according to their Tanimoto distance to the
closest center that is chosen. We summarize the proposed
clustering algorithm (called K-means*++) in Algorithm 1.
The proposed K-means*++ is an improvement over K-
means++ in terms of initial center selection. Compared with
the standard K-means (MacQueen 1967), both K-means++
and K-means*++ are able to achieve more stable clustering
results, due to their effectiveness for seeding the initial cen-
ters. However, it is worth pointing out that K-means*++ is
able to achieve better clustering results than K-means++ for
model fitting. This is because that K-means*++ uses the pref-
erence information to measure the similarity between data
points, which is more effective than the Euclidean distance
used by K-means++, for robust model fitting.

3 The Complete Method and Complexity
Analysis

In this section, based on the components described in the
previous sections, we summarize the complete Continuous
Latent Semantic Analysis (CLSA) fitting method in Algo-
rithm 2.

The proposed CLSA mainly includes three parts: the
latent semantic space (LSS) construction, outlier removal,
and inlier segmentation. CLSAfirstly constructs LSS by both
latent semantic analysis and continuous preference analysis,
to map inliers of different model instances to several inde-
pendent directions while gross outliers are mapped to the
region close to O in LSS. Then, CLSA analyzes the distri-
bution of the mapped points in LSS and adaptively removes
gross outliers by using information theory, which makes the

Algorithm 2 The CLSA fitting method
Input: Data points X , the threshold value of ψ and the dimension rk .
1: Sample a number of minimal subsets to generate model hypotheses.

2: Compute the preference matrix by Eq. (1).
3: Construct the latent semantic space (LSS) and map all data points

to LSS according to Eq. (9).
4: Remove the points corresponding to gross outliers in LSS by

Eq. (14).
5: Label the remaining points in LSS via the proposed K-means*++

(see Algorithm 1).
6: Estimate the parameters of model instances in data according to the

labels of the points in LSS.
Output: The parameters of model instances and the labels of data

points.

model fitting problem easier to deal with. After that, CLSA
labels the remaining points via an improved K-means*++
clustering algorithm, by which the parameters and inliers of
model instances are estimated and segmented, respectively.
As the experimental results show in Sect. 4, CLSA is able to
efficiently and effectively deal with themulti-structure fitting
problem.

For the computational complexity of the proposed CLSA,
we mainly focus on improving both the effectiveness and
computational efficiency of model selection for model fit-
ting in this paper, and thus we do not consider the time
for model hypothesis generation (i.e. Step 1). The prefer-
ence matrix can be directly derived from the residual values
between data points and model hypotheses (i.e. Step 2), thus
its computational complexity is O(n), where n is the num-
ber of data points. For constructing the latent semantic space
(i.e. Step 3), the computational complexity is approximately
O(nrk), where rk is the dimension of LSS, respectively. For
outlier removal (i.e. Step 4), the computational complexity
is O(n). For Algorithm 1, the computational complexity is
O(n̂m), where n̂ is the number of estimated inliers. Thus
the total complexity of CLSA approximately amounts to
O(nrk + n̂m).

4 Experiments

In this section, we investigate the performance of the pro-
posed CLSA fitting method, and compare it with several
state-of-the-artmodel fittingmethods4, including the consen-
sus analysis based fitting methods [i.e., MSHF (Wang et al.
2019) andRansaCov (Magri andFusiello 2016)] and the pref-
erence analysis based fitting methods [i.e., T-linkage (Magri
and Fusiello 2014) and RPA (Magri and Fusiello 2017)], on
both synthetic data and real images. Moreover, to show the

4 For MSHF, we use the code provided by the authors. For RansaCov,
T-linkage and RPA, we download the codes from the following website:
http://www.diegm.uniud.it/fusiello/demo.
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Fig. 4 The segmentation errors obtained by the proposedCLSA2fitting
method with different parameter values for line fitting based segmen-
tation (a, d), homography based segmentation (b, e), and two-view

based motion segmentation (c, f). The horizontal coordinate values of
the black points in (d, e, f) denote the groundtruth number of model
instances in data

effectiveness of the proposed clustering algorithm, we test
two versions of CLSA: CLSA1, which uses the traditional K-
means algorithm (MacQueen 1967) to cluster points in LSS,
and CLSA2, which uses the proposed K-means*++ algo-
rithm to cluster points in LSS. We also run RCMSA (Pham
et al. 2014) as a baseline for high-order fitting tasks (i.e.,
homography based segmentation and two-viewbasedmotion
segmentation) due to its effectiveness.

All experiments are run on MS Windows 10 with Intel
Core i7-3770 CPU 3.4GHz and 16GB RAM. The segmen-
tation error (SE) is measured by the cost function in Eq. (2).

4.1 Parameter Analysis and Settings

In this subsection, we analyze the influence of the parameter
(i.e., the threshold ψ in Eq. (1)) of the proposed CLSA2
fitting method on its performance. We test different val-
ues of the parameters for line fitting based segmentation,
homography based segmentation and two-viewbasedmotion
segmentation (for each task in Sect. 4.4, 4.5 and 4.6, we
test three datasets, respectively), and show the segmentation
errors obtained by CLSA2 with different parameter values in
Fig. 4a–c.

We can see that, CLSA2 is abe to achieve low seg-
mentation errors in the three fitting tasks for most cases.

Specifically, when the value of the threshold ψ (Fig. 4a–c) is
respectively set to 0.04 ∼ 0.10 (for line fitting based segmen-
tation), 0.02 ∼ 0.09 (for homography based segmentation)
and 0.01 ∼ 0.04 (for two-view based motion segmentation),
CLSA2 is able to achieve relatively stable results. Thus, we
set the value of ψ to 0.04 for all the following experiments.

We have also tested the proposed CLSA2 fitting method
with different rk values in Eq (9) for line fitting based
segmentation, homography based segmentation and two-
view based motion segmentation. We show the segmentation
errors obtained byCLSA2with different rk values in Fig. 4d–
f.

We can see that, when the rk value is less than the ground
truth number of model instances in data, CLSA2 fails to fit
model instances for all three fitting tasks. In contrast, when
the rk value is equal to or larger than the ground truth number
of model instances, CLSA2 is able to achieve low segmen-
tation errors. This is because some inliers of different model
instances are wrongly mapped into one direction, if the rk
value is less than the ground truth number ofmodel instances,
which causes K-means*++ (used by CLSA2) to fail to cor-
rectly label these points. Thus, we set the rk value to a large
value,which is obviously larger than the ground truth number
of model instances for Eq. (9).

123



International Journal of Computer Vision (2021) 129:2034–2056 2043

RANSAC MultiGS Proximity
0

0.02

0.04

0.06

0.08

0.1
S

E
Three-Line
Five-Line
Six-Line

(a)

RANSAC MultiGS Proximity
0

0.02

0.04

0.06

0.08

0.1

S
E

Hartley
Neem
Johnsona

(b)

RANSAC MultiGS Proximity
0

0.02

0.04

0.06

0.08

0.1

S
E

Cubchiips
Breadtoycar
Cubebreadtoychips

(c)

Fig. 5 The segmentation errors obtained by the proposed CLSA2 fitting method with different sampling algorithms (i.e., RANSAC, MultiGS and
Proximity) for the tasks of a line fitting based segmentation, b homography based segmentation and c two-view based motion segmentation

In this paper, we mainly focus on model selection. Thus,
we provide the number of model instances to the proposed
method as the competing methods (i.e., RansaCov, RPA and
T-linkage) do. That is, rk is equal to k in Algorithm 1.

4.2 The Influence of Sampling Algorithms

We also analyze the performance of CLSA2with three popu-
lar sampling algorithms [i.e., RANSAC (Fischler and Bolles
1981), MultiGS (Chin et al. 2012) and Proximity (Kanazawa
and Kawakami 2004)] for line fitting based segmentation,
homography based segmentation and two-viewbasedmotion
segmentation, respectively. For each task in Sects. 4.4, 4.5
and 4.6, we test three datasets, respectively, and we also
show the segmentation errors obtained by CLSA2 in Fig. 5.

We can see that, for line fitting based segmentation, three
versions of CLSA2 using all three sampling algorithms are
able to achieve low segmentation errors (see Fig. 5a) com-
pared with the other competing fitting methods. However,
when using the random sampling algorithm (which is used
in RANSAC), CLSA2 generates a high proportion of bad
model hypotheses for high-order fitting tasks. For this case,
CLSA2 achieves relatively higher segmentation errors than
those achieved by CLSA2 using the guided sampling algo-
rithms (see Fig. 5b, c). Among the three sampling algorithms,
Proximity generates a similar quality of model hypotheses as
MultiGS does, but it is much faster thanMultiGS. Therefore,
we select Proximity as the sampling algorithm for the pro-
posed method and all the other competing methods in the
following experiments.

4.3 The Influence of the Number of Model
Hypotheses

In this subsection, we analyze the performance of CLSA2
with different numbers of model hypotheses for line fitting
based segmentation, homography based segmentation and
two-view based motion segmentation. For each task, we also

test the three datasets, and we show the segmentation errors
obtained by CLSA2 and the CPU time used by CLSA2 in
Fig. 6.

We can see that, CLSA2 is able to achieve low segmenta-
tion errors even when we generate a small number of model
hypotheses for all three fitting tasks (see Fig. 6a–c), and
it also achieves stable fitting results (across different num-
bers of model hypotheses), which further shows the stable
properties of CLSA2. For the CPU time, CLSA2 spends
more time with increasing number of model hypotheses for
the three fitting tasks (see Fig. 6d–f). This is because that
the preference analysis becomes more complex when more
model hypotheses are generated. Therefore, for CLSA2, we
can generate a small number of model hypotheses for the
three fitting tasks. However, to fairly compare with the other
competing methods, we use the same setting of the num-
ber of model hypotheses, as that used in Wang et al. (2012)
and Wang et al. (2019). That is, we generate 5, 000, 10, 000
and 20, 000 model hypotheses for line fitting based segmen-
tation, homography based segmentation and two-view based
motion segmentation, respectively. Moreover, all the com-
peting methods select model instances based on the same
model hypotheses.

4.4 Line Fitting Based Segmentation

We evaluate the performance of the six fitting methods for
line fitting based segmentation on four challenging syn-
thetic data. We repeat each experiment 50 times. We report
the average segmentation errors (in the format of average
errors±standard deviation) obtained by the six fitting meth-
ods, and the average CPU time5 (in seconds) used by the
competing methods in Table 1. We also show the fitting
results obtained by the proposed method in Fig. 7.

5 For the CPU time, we exclude the time used for sampling minimal
subsets and generating model hypotheses for all the competing fitting
methods in all the following experiments.
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Fig. 6 The segmentation errors obtained by and the CPU time used by the proposed CLSA2 fitting method with different numbers of model
hypotheses for the tasks of line fitting based segmentation (a, d), homography based segmentation (b, e) and two-view based motion segmentation
(c, f)

(a) 3 lines (b) 4 lines (c) 5 lines (d) 6 lines

Fig. 7 The results obtained by the proposed methods (CLSA2) for line
fitting based segmentation. The first row of each sub-figure shows the
ground truth segmentation results and the second row shows the fitting
and segmentation results obtained by CLSA2. The inlier noise scale is

1.5 and each line has 100 inliers. The outliers are labeled in blue, and the
inliers of each estimated model instance are labeled in different colors
(the following figures have the same settings)
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Table 1 Quantitative comparison results obtained by the six competing methods for line fitting based segmentation on four synthetic data

Data MSHF RansaCov T-linkage RPA CLSA1 CLSA2

3 lines SE 0.05 ± 0.05 0.03 ± 0.00 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.04 0.02 ± 0.01

Time 1.96 2.88 88.94 175.31 0.65 0.80

4 lines SE 0.06 ± 0.05 0.03 ± 0.01 0.10 ± 0.08 0.03 ± 0.01 0.08 ± 0.14 0.02 ± 0.00

Time 2.12 3.46 119.12 222.11 0.83 1.12

5 lines SE 0.03 ± 0.01 0.03 ± 0.00 0.11 ± 0.11 0.03 ± 0.02 0.08 ± 0.11 0.02 ± 0.01

Time 2.11 3.51 154.61 360.55 0.99 1.47

6 lines SE 0.11 ± 0.04 0.08 ± 0.02 0.35 ± 0.10 0.41 ± 0.09 0.10 ± 0.11 0.05 ± 0.02

Time 2.16 4.37 193.74 430.03 1.24 1.87

The best results of SE and CPU time are respectively labeled in bold face and italic face

From Fig. 7 and Table 1, we can see that the proposed
CLSA2 fitting method achieves significantly better results
than the other five competing fitting methods, with regard to
the average segmentation errors. For the CPU time, CLSA2
achieves similar performance to CLSA1 but it is much faster
than the other four fitting methods: CLSA2 is about 1.10
to 229.96 times faster than the other four fitting methods.
CLSA1/CLSA2 are faster than the other four competing
methods since they effectively reduce the high dimension
of the preference matrix, by which they are able to greatly
improve the computational efficiency.Moreover, they formu-
late the line fitting problem as a simpler clustering problem,
which further improves the computational speed.

For the segmentation accuracy, MSHF, RansaCov and
CLSA1 achieve similar low segmentation errors for all the
four data. T-linkage and RPA achieve low segmentation
errors for the “3 lines”, “4 lines” and “5 lines” data, but
both may fail to fit the “6 lines” data among the 50 repeti-
tions because they deal with the crossing model instances
ineffectively (note that the “6 lines” data includes many
crossing model instances). In contrast to CLSA2, CLSA1
is not very stable. This is because that K-means used by
CLSA1 is sensitive to the initialization. Thus, CLSA1 is not
able to achieve low standard deviations of error. In contrast,
CLSA2 succeeds in fitting all the four data, and achieves
the lowest average segmentation errors among the six com-
peting fitting methods, for all the four data. Compared with
CLSA1, CLSA2 is also very stable and achieves relatively
lower standard deviations due to the effectiveness of the pro-
posed K-means*++ (used by CLSA2).

4.5 Homography Based Segmentation

We evaluate the competing methods for homography based
segmentation on the 19 real image pairs from the Adelai-
deRMF dataset (Wong et al. 2011)6 (the dataset contains
19 image pairs for homography based segmentation, and 19

6 http://cs.adelaide.edu.au/~hwong/doku.php?id=data

image pairs for two-view based motion segmentation, which
will be evaluated in Sect. 4.6). We repeat each experiment 50
times, and report the average results obtained by the seven
competing methods in Table 2. We also show some fitting
results obtained by CLSA2 for homography based segmen-
tation in Fig. 8.

From Fig. 8 and Table 2, we can see that CLSA2 is able to
achieve good results, obtaining the lowest average segmen-
tation errors for 11 out of the 19 image pairs and obtaining
the top three lowest segmentation errors for 7 out of the
other 8 image pairs among all the seven competing fitting
methods. Considering all the 19 image pairs, CLSA2 also
achieves the lowest mean and median values of overall seg-
mentation errors. It isworth pointing out thatCLSA1/CLSA2
implement the process of model selection within one second
for 16 out of the 19 image pairs, which is much less than
the time used by the other five competing methods. In con-
trast, MSHF only succeeds in fitting 13 out of the 19 image
pairs. RansaCov also achieves low segmentation errors for
11 out of the 19 image pairs. However, RansaCov is slower
than MSHF for all image pairs and it produces a higher
median value of overall segmentation errors than MSHF.
This is becauseMSHF removesmost of the ineffectivemodel
hypotheses before performing the process ofmodel selection,
while RansaCov considers all generated model hypotheses
during the model selection procedure. Although T-linkage
and RPA are preference analysis based fitting methods (like
CLSA2), both are not able to achieve low segmentation errors
(compared to CLSA2) for most of the image pairs. This
is because that CLSA2 only keeps the principal preference
information while removing the redundant information by
latent semantic analysis. Moreover, CLSA2 uses an effective
clustering algorithm (i.e., K-means*++) to label data points.
Note that, CLSA1 achieves the same average segmentation
errors as CLSA2 for 7 out of the 19 image pairs, but it pro-
duces higher average segmentation errors thanCLSA2 for the
other 12 image pairs, which further shows the effectiveness
of the improved K-means*++ clustering algorithm. RCMSA
outperforms the other six competing methods for the image
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(a) Physics (b) Nese

(c) Bonython

(h) Oldclassicswing

(d) Elderhalla

(i) Barrsmith

(e) Library

(j) Neem

(f) Sene

(k) Napierb

(g) Hartley

(l) Johnsona

Fig. 8 The results obtained by CLSA2 for homography based segmen-
tation on some of the AdelaideRMF dataset (two views are shown for
each case in (a, b), and only one of the two views is shown for each case

in (c–l). The first row in (a, b) shows the original images. The first row
in (c–l) shows the ground truth segmentation results, and the second
row in (a–l) shows the fitting results obtained by CLSA2

pairs including a large number of model instances (i.e., the
Unihouse, Bonhall and Johnsonb image pairs), but it fails in
fitting the image pairs with unbalanced data (e.g., the Barr-
smith, Elderhallb and Napierb image pairs).

4.6 Two-View BasedMotion Segmentation

For the task of two-view based motion segmentation, we
use the other 19 image pairs of the AdelaideRMF dataset
to evaluate the performance of the seven competing fitting
methods. We show the average results in Table 3, and we
also show some fitting results obtained by CLSA2 in Fig. 9.
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(a) Game (b) Cubebreadtoychips

(c) Biscuit

(h) Carchipscube

(d) Breadcube

(i) Breadcubechips

(e) Breadtoy

(j) Biscuitbookbox

(f) Gamebiscuit

(k) Breadcartoychips

(g) Breadtoycar

(l) Dinobooks

Fig. 9 Some results obtained by CLSA2 for two-view based motion
segmentation on the AdelaideRMF dataset (two views are shown for
each case in (a–b), and only one of the two views is shown for each

case in (c–l). The first row in (a, b) shows the original images. The
first row in (c–l) shows the ground truth segmentation results, and the
second row in (a–l) shows the fitting results obtained by CLSA2

From Fig. 9 and Table 3, we can see that RansaCov
achieves high average segmentation errors and it fails to
fit model instances for most cases. This is because that
RansaCov considers all the generated model hypotheses,
which include a large number of ineffective hypotheses. Note
that the minimal subset for the two-view based motion seg-
mentation task consists of 7 or 8 data points, and it is hard

to sample an all-inlier minimal subset. Thus, it requires sam-
pling a large number of minimal subsets to increase the
probability of covering all model instances in data, but this
will generate more ineffective model hypotheses as well. As
the results show, the ineffective model hypotheses have sig-
nificant influence on the fitting results obtained byRansaCov.
BothT-linkage andRPAare able to achieve low segmentation
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errors for most of the image pairs, but their computational
costs are relatively high, due to the use of the complicated
clustering procedure. MSHF is able to achieve reasonably
low average segmentation errors for 12 out of the 19 image
pairs, and CLSA1 achieves reasonably low average segmen-
tation errors for 8 out of the 19 image pairs. RCMSA is also
able to achieve low average segmentation errors for most
cases. Compared with the other competing methods, CLSA2
obtains the lowest segmentation errors for 16 out of the 19
image pairs and it obtains the lowest mean andmedian values
of overall segmentation errors. In addition, CLSA2 is able to
achieve very stable segmentation errors for all the 19 image
pairs, when we repeat each experiment 50 times (note that
each experiment uses different generatedmodel hypotheses).
This excellent performance mainly results from the steps of
latent semantic space construction, outlier removal and inlier
segmentation in CLSA2. Note that, CLSA1/CLSA2 are able
to implement the process of model selection within 2 second
for all the image pairs, which is much faster than the other
five competing methods.

5 Discussion

5.1 The Comparison Between CLSA1 and CLSA2

In this paper, we proposed a basic approach with two identi-
fied variants. Both variants perform well - usually being the
fastest and the most accurate, something uncommon in accu-
racy/cost tradeoffs. CLSA1 is the variant one would choose
in general, if speed is a high priority, as it is usually faster and
generally not so inferior in performance (still usually beating
the competitors other than our slower variant). CLSA2 is one
that would be recommended if speed is less of an issue and
higher performance in segmentation has high priority.

Compared to the other competing methods, the proposed
CLSA2 is more generalized, for handing the model fitting
problem, and it only requires a few parameters (whose values
do not significantly affect the accuracy of CLSA2). CLSA2
is also robust to different guided sampling algorithms and
different numbers of the generated model hypotheses.

From the experimental results of line fitting based seg-
mentation, we can see that CLSA2 is able to effectively deal
with the data with different numbers of model instances,
and a large number of outliers. From the experimental
results of homography based segmentation and two-view
based motion segmentation, CLSA2 also shows good perfor-
mance compared to the other competing methods. Note that,
CLSA2 shows significant advantages over the other compet-
ing methods for two-view based motion segmentation over
homography based segmentation. One of the reasons is that,
the task for two-view based motion segmentation is more
challenging since it requires dealing with more ineffective

MaximumMinimum

(a)
Data Points Model Hypotheses

0

5

10

15

20

25

30

35

R
at

io
s 

(%
)

Minimum
Maximum

0.08%

5.71%

31.74%

26.66%

(b)

Fig. 10 An example showing a unbalanced data and the corresponding
ratios of inliers and model hypotheses. a The minimum (in green) and
maximum (in red) inlier cases of the “Bonhall” image pair. b The mini-
mumandmaximum ratios of inliers to all data points and the ratios of the
generated model hypotheses corresponding to the two model instances
in all generated model hypotheses

model hypotheses. Moreover, we cannot ignore the fact that
some fitting methods (e.g. MSHF) directly deal with the fit-
ting task in the parameter space, and those methods are able
to more effectively handle the data points located at the inter-
section of two structures. However, the fitting performance
of those methods largely depends on the quality of the gener-
ated model hypotheses. Thus, the proposed CLSA2 achieves
much better performance than those methods for two-view
based motion segmentation.

Although the proposed CLSA2 significantly improves the
performance of several state-of-the-art fitting methods on
dealing with unbalanced data (that is, the numbers of inliers
belonging to different model instances are unbalanced), it
may not be effective to deal with heavily unbalanced data.
We show an example of a unbalanced data in Fig. 10. We
can see that, the minimum and maximum ratios of inliers
belonging different model instances to all data points for the
“Bonhall” imagepair are significantly different, and the ratios
of the generated model hypotheses corresponding to the two
model instances to all model hypotheses are much more dif-
ferent. In this case, the preference function (used in CLSA2)
is not effective for the inliers of the model instance with the
minimum inlier ratio. As a result, the proposed CLSA2 can
not fit this data very well. However, all of the other com-
peting fitting methods also have this limitation. Note that,
sampling non-minimal subsets may help alleviate the unbal-
ance of the generatedmodel hypotheses, as discussed in Tran
et al. (2014). However, it is still a very challenging problem.

5.2 The Influence of Different Components of the
ProposedMethod

It is worth pointing that, in this paper, we argue that
the proposed CLSA fitting method with the combination
of latent semantic analysis (LSA) and continuous pref-
erence analysis (CPA) is an important improvement over
that using either LSA or CPA. To verify this, we eval-
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Fig. 11 Quantitative comparisons of different versions of the proposed
method for line fitting based segmentation. In each subfigure, we show
the segmentation errors obtained by and the CPU time used by the

proposed methods with respect to the cumulative distribution. A point
on the curve with coordinate (x, y) represents that there are 100 × x
percents of image pairs which have values no more than y

uate three different versions of CLSA, i.e., CLSA with
LSA and CPA, CLSA+BPA with LSA and binary pref-
erence analysis (BPA), and CLSA+t-SNE with CPA and
t-SNE (Maaten and Hinton 2008), for line fitting based seg-
mentation, homography based segmentation and two-view
based motion segmentation. We also test different outlier
removal strategies (i.e., 1D Mixture Gaussian Model (Chin
et al. 2009), RFM (Jiang et al. 2020) and LPM (Ma et al.
2019)), for the proposed method with CLSA+Gaussian,
CLSA+RFM and CLSA+LPM, respectively (here, RFM and
LPMonlywork for the two-viewmodel fitting problem, thus,
we test CLSA+RFM and CLSA+LPM only for homography
based segmentation and two-view based motion segmenta-
tion). In addition, to compare the Tanimoto distance, we test
a version (i.e. CLSA+Eucldean) with the Eucldean distance.
To test different qualities of preferencematrices, we generate
20 groups of model hypotheses for all versions of CLSA.We
show the quantitative comparisons of different versions of
CLSA in Figs. 11, 12 and 13 for line fitting based segmen-
tation, homography based segmentation and two-view based
motion segmentation, respectively.

From Figs. 11, 12 and 13, we can see that, CLSA is able
to achieve better performance on the segmentation error than
CLSA+BPA formost of the datasets, especially for the task of
line fitting based segmentation (see Fig. 11), where the data
include a large number of outliers (and they use the similar

CPU time for all datasets). This shows the effectiveness of
CPA for model fitting. For CLSA and CLSA+t-SNE, which
dealwith the preferencematrix usingLSAand t-SNE, respec-
tively, CLSA is able to achieve lower segmentation errors
with much less CPU time than CLSA+t-SNE, for all the
three tasks (see Figs. 11, 12 and 13). This shows the effective-
ness of LSA for model fitting. For different outlier removal
strategies, CLSA achieves lower segmentation errors than
CLSA+Gaussian, CLSA+RFM and CLSA+LPM for all the
three tasks, while they spend the similar CPU time. This fur-
ther shows the effectiveness of our proposed outlier removal
strategy for model fitting. For different distance measures,
CLSA is able to show the superiority over CLSA+Eucldean
on the performance of the segmentation error for all the three
tasks, while they also spend the similar CPU time. Thus, this
shows the effectiveness of the Tanimoto distance for model
fitting. For different qualities of preference matrices, CLSA
is able to achieve stable fitting results for all the three tasks.

5.3 The Estimation of the Number of Model
Instances

The estimation of the number of model instances in data is
also an important and challenging task for model fitting. We
note that if two model hypotheses correspond to the same
model instance, they will share most of their inliers. Thus,
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Fig. 12 Quantitative comparisons of different versions of the proposed method for homography based segmentation. In each subfigure, we show
the segmentation errors obtained by and the CPU time used by the proposed methods with respect to the cumulative distribution
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Fig. 13 Quantitative comparisons of different versions of the proposed method for two-view based motion segmentation. In each subfigure, we
show the segmentation errors obtained by and the CPU time used by the proposed methods with respect to the cumulative distribution
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(a)

(b)

Fig. 14 An example of estimating the number of model instances on an
image pair. a The over-segmented result when we input k = 10. b The
segmentation result after estimating the number of model instances by
using the proposed solution

we provide a promising solution for adaptively estimating
the number of model instances in data by analyzing the inlier
distribution and the quality of the estimated model instances.
Specifically, we set the value of k in Algorithm 2 to be a rea-
sonable large number so that the maximum number of model
instances in data is less than k. In this way, it is much easier
to set the k value than to require an user to input the truth
number of model instances in data. After obtaining k model
hypothesis candidates by Algorithm 2 (note that these model
hypothesis candidates are significantmodel hypotheses since
most of outliers have been removed in Step 4 of Algorithm 2,
but the result may be over-segmented as k is usually larger
than the true number of model instances in data), we com-
pute the ratio of the common inliers shared by any twomodel
hypothesis candidates, and group the two model hypothesis
candidates into one cluster if the ratio of the common inliers
shared by the twomodel hypothesis candidates is high (which
means they are more likely to correspond to the same model
instance). This process will fuse the model hypothesis can-
didates corresponding to the same model instance. Then, we
estimate the number ofmodel instances by counting the num-
ber of the model hypothesis groups. In Fig. 14, we show an
example for the process of estimating the number of model
instances. We can see that, the result in Fig. 14a is over-
segmented when we input k = 10 (that is, we assume that the
maximum number of model instances in the data is less than
10,which canbe satisfied inmost commoncases). In contrast,
we obtain the good segmentation result in Fig. 14b, where we
keep the model hypothesis candidate that has the best qual-
ity [measured by weighting scores (Wang et al. 2012)] in
each cluster as the parameter estimation of the correspond-

ing model instance, after estimating the number of model
instances by the proposed solution.

6 Conclusion

In this paper, we propose a continuous latent semantic anal-
ysis based fitting method (called CLSA), which exploits
the advantages of both latent semantic analysis (LSA) and
continues preference analysis (CPA). LSA is able to signifi-
cantly increase the efficiency and reduce the computational
cost of the proposed CLSA method. CPA can be used
by CLSA to effectively represent the relationship between
model hypotheses and data points. By exploiting the advan-
tages of both LSA and CPA, we construct a novel latent
semantic space (LSS), where we map gross outliers close to
the origin of LSS, while mapping inliers of different model
instances to several independent directions inLSS.After that,
we employ an information theoretic approach to remove the
points corresponding to gross outliers in LSS. Then we treat
the complex model fitting problem as a simple clustering
problem (which is much easier to be dealt with because the
data points corresponding to gross outliers are removed). We
also propose an effective but simple clustering algorithm for
inlier segmentation. Extensive experimental results show that
the proposed CLSA method is able to achieve better perfor-
mance than several state-of-the-art fitting methods on both
segmentation accuracy and computational efficiency for dif-
ferent model fitting tasks.
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