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A B S T R A C T

Establishing reliable correspondences by a deep neural network is an important task in computer vision,
and it generally requires permutation-equivariant architecture and rich contextual information. In this paper,
we design a Permutation-Equivariant Split Attention Network (called PESA-Net), to gather rich contextual
information for the feature matching task. Specifically, we propose a novel ‘‘Split–Squeeze–Excitation–Union’’
(SSEU) module. The SSEU module not only generates multiple paths to exploit the geometrical context of
putative correspondences from different aspects, but also adaptively captures channel-wise global information
by explicitly modeling the interdependencies between the channels of features. In addition, we further construct
a block by fusing the SSEU module, Multi-Layer Perceptron and some normalizations. The proposed PESA-Net
is able to effectively infer the probabilities of correspondences being inliers or outliers and simultaneously
recover the relative pose by essential matrix. Experimental results demonstrate that the proposed PESA-Net
relative surpasses state-of-the-art approaches for pose estimation and outlier rejection on both outdoor scenes
and indoor scenes (i.e., YFCC100M and SUN3D). Source codes: https://github.com/x-gb/PESA-Net.
. Introduction

Feature matching is a fundamental and important problem for a
ariety of applications in computer vision [1,2], such as Image Re-
rieval [3], Image Fusion [4], Image Registration [5] and Structure from
otion (SfM) [6,7].

Given two images of the same or similar scenes, the aim of feature
atching is to establish reliable feature correspondences. Note that
atching 𝑁 feature points to another 𝑁 feature points may require

olving an 𝑁𝑃 -hard assignment problem. To deal with the complex
roblem, a common strategy of feature matching is typically solved in a
wo-step manner, that is, generating a set of putative correspondences
y picking out point pairs with sufficiently similar feature descriptors
nd establishing reliable correspondences from the generated putative
nes. For the first step, the putative correspondences are usually ex-
racted by a robust extractor, such as scale invariant feature transform
SIFT) [8]. However, the brute-force putative correspondences often
ontain a large number of false matches (i.e., outliers), due to the
ow-quality images and the constraint of local descriptor information.
hus, it is critical to design a robust approach, for establishing reliable
orrespondences in the second step.

∗ Corresponding author.
E-mail address: gbx@mju.edu.cn (G. Xiao).

Recently, learning-based methods, e.g., LGC-Net [9], DFE-Net [10],
OA-Net [11] and ACNe-Net [12], have been extensively proposed for
feature matching, due to the excellent performance of deep neural
network. However, LGC-Net, DFE-Net and OA-Net, rely on PointCN,
a PointNet-like architecture with Context Normalization, which nor-
malizes the feature maps according mean and variance. Therefore,
Context Normalization can be expressed as the solution of a least-
squares problem which is not robust to outliers. To deal with the
problem, ACNe-Net is proposed to capture the context information in
both global and local manner, by a normalization operation. However,
the normalization operation neglects channel-wise correspondence con-
textual information, which may lead to sub-optimal performance for
feature matching.

In this paper, we propose a novel attention mechanism called ‘‘Split–
Squeeze–Excitation–Union’’ (SSEU) module, which extracts the contex-
tual information in a channel-wise manner, to improve the match-
ing performance. Comparing with other state-of-the-art approaches on
YFCC100M unknown scenes [13], our network introduces very few ad-
ditional parameters and negligible computations while bringing notable
performance gain, as shown in Fig. 1. Specifically, the SSEU module
vailable online 2 August 2021
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Fig. 1. Comparison of various learning based feature matching networks (i.e., LGC-
Net [9], DFE-Net [10], OA-Net++ [11], ACNe-Net [12] and our proposed PESA-Net)
in terms of mAP (at 5◦ error threshold), network parameters and FLOPs, indicated by
radiuses of circles.

consists of four operations: Split, Squeeze, Excitation and Union, to gather
the channel-wise global information from different aspects for feature
matching. The Split operation generates multiple paths to exploit the
eometrical context of putative correspondences from different aspects.
he Squeeze operation aggregates feature-maps to produce a channel

descriptor. The Excitation operation adopts the channel dependence to
learn for each channel by a Multi-Layer Perceptron (MLP), to achieve
the excitation of each channel. The Union operation combines and
aggregates the geometrical context information from multiple paths.
Note that, the SSEU module not only uses a channel-wise manner, but
also includes a local and global manner.

To handle the unordered correspondence features, we follow the
existing learning-based feature matching methods to build the network
based on a Multi-Layer Perceptron (MLP), which is able to provide
permutation equivariance, which is not feasible with neither convo-
lutional nor fully-connected [12]. Then, we construct a Permutation-
Equivariant Split Attention (PESA) block, which is fused by the MLP,
SSEU module, and some normalizations. After that, by stacking the
PSEA blocks together, we build our network called PESA-Net. We show
the overview of our PESA-Net in Fig. 2. Note that we add Context
Normalization after each MLP to enrich contextual information. In
addition, we also insert the Geometric Attention Block, which contains
a Differentiable Pooling Layer [14], Order Aware Filtering Block, and
Differentiable Unpooling Layer [11], in the middle of each iterative
sub-network to extract the local information and global information of
correspondences due to the effective performance.

We summarize the contributions as follows:

• We develop a simple and effective attention mechanism, named
‘‘Split–Squeeze–Excitation–Union’’ (SSEU) module, which generates
multiple paths and adopts channel-wise dependence to capture
rich contextual information from different aspects in a permu-
tation invariant manner. To the best of our knowledge, we are
the first one to introduce the split-attention mechanism to handle
feature matching problems.

• We construct a permutation-equivariant block, which consists of
the SSEU module, Multi-Layer Perceptron and some normaliza-
tions, to exploit the complex global context of sparse and un-
ordered correspondence data. In addition, we also design an itera-
tive permutation-equivariant network by stacking the PESA block
and Geometric Attention block together, for feature matching.
82
• The proposed PESA-Net achieves the state-of-the-art performance
on relative pose estimation and outlier rejection tasks on both two
challenging outdoor and indoor benchmarks (i.e., YFCC100M [13]
and SUN3D [15]).

The rest of the paper is organized as follows: We first review
the related feature matching literatures in Section 2. Then, we de-
scribe the details of the proposed method in Section 3 and present
the experimental results in Section 4. Finally, we draw conclusions in
Section 5.

2. Related work

In the section, we briefly introduce the learning-based feature
matching methods highly related to our paper. In addition, we also
review some related work of attention mechanisms.

2.1. Traditional handcrafted matching

The traditional handcrafted methods for feature matching between
two images use the descriptors, such as SIFT [8], rotated BRIEF (ORB)
[16], LIFT [17] or SuperPoint [18] to generate the rough initial corre-
spondence set. The initial correspondence set often contains a mass of
false correspondences (i.e., outliers). Thus, outlier rejection plays a core
role in feature matching. Random sampling consensus (RANSAC) [19]
and its variances, e.g., a maximum likelihood estimation sample con-
sensus (MLESAC) [20], progressive sample consensus (PROSAC) [21], a
universal framework for random sample consensus (USAC) [22], degen-
eracy check using homographies (DEGENSAC) [23] and marginalizing
sample consensus (MAGSAC) [24], are the classical traditional hand-
crafted matching methods. These methods employ a hypothesize-and-
verify framework for an attempt to obtain the largest inlier correspon-
dence set that conforms to a provided parametric model by re-sampling.
MLESAC is adept in solving image geometry problems. PROSAC shows
improvements when reducing the time of the estimation process. USAC
integrates multiple advancements into a unified framework. DEGEN-
SAC can estimate the epipolar geometry from point correspondences in
the possible presence of a dominant scene plane. MAGSAC eliminates
the threshold by marginalizing over the noise. Although RANSAC and
its variants still remain to be regarded as a standard solution in the
traditional handcrafted matching, these methods considerably rely on
a predefined parametric model.

In addition, to deal with the rigid and non-rigid scenarios problem,
the non-parametric fitting methods are introduced as well, such as
locality preserving matching (LPM) [25], guided locality preserving
feature matching (GLPM) [26], and vector field consensus (VFC) [27].
LPM exploits that the image pair of the same scene or object has a
similar spatial neighborhood relationship. Based on this observation,
LPM adopts spatial neighbor relationships to remove outliers to retain
inliers. GLPM formulates the neighborhood structures of accurate po-
tential matches between two images into a mathematical model and
gets quick results. VFC defines a reproducing kernel Hilbert space with
Tikhonov regularization for smoothness constraint and introduces a
new framework for non-rigid point matching.

2.2. Learning-based feature matching methods

Recently, a mass of learning-based methods gets huge success in
a wide range of computer vision tasks, such as image classification,
image segmentation, 3D object detection, point cloud classification,
etc. Analogously, they also achieve great success in feature matching
domain. For example, Graph Neural Networks [28,29] treat feature
matching as an assignment problem or an optimal transport problem.
However, they are extremely time-consuming and memory-costly con-
sumption. Additionally, LGC-Net [9] proposes a simple normalization
for embedding contextual information to each correspondence. DFE-

Net [10] treats feature matching as a series of weighted homogeneous
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Fig. 2. The proposed PESA-Net architecture.
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east-squares problems and employs a different loss function and an
terative network. OA-Net [11] employs a cluster-recover frame to
eject outliers. Nevertheless, all of LGC-Net, DFE-Net and OA-Net do
ot perform very well for feature matching due to the constraints of the
imple PointCN block, which is an important part of their network and
t is not very robust to outliers. NM-Net [30] proposes a compatibility-
pecific distance to define neighbors of correspondence and integrates
ach correspondence with its neighbors. But NM-Net requires complex
ndex preprocessing. ACNe-Net [12] also employs a normalization to
xtract global information and local information simultaneously, but it
eglects latent channel relations of correspondences which are critical
or rejecting outlier. In this work, we develop a novel module to gather
hannel-wise global information from different aspects, for boosting the
atching performance.

.3. Attention mechanism

The attention mechanism has been widely used in natural lan-
uage processing and computer vision. For example, RMA [31] adopts
he attention mechanism on the RNN model for image classification.
NNsearch [32] adopts a similar attention mechanism for simultane-
us translation and alignment on machine translation tasks. Trans-
ormer [33] firstly proposes a self-attention mechanism for machine
ranslation. After that, the attention mechanism is widely used both
n natural language processing and computer vision. For instance,
E-Net [34] introduces a channel-attention mechanism to learn the con-
extual information adaptively. SK-Net [35] and ResNeSt [36] employ
split-attention mechanism to deal with the image classification issue.

In this paper, we try to introduce the novel attention mechanism to
etter capture contextual information for feature matching. However,
he above attention mechanisms are designed with highly regular input
ata formats such as image grids. Note that, the feature matching task
equires the network to be permutation-equivariant, since the input
orrespondences for feature matching are sparse and unordered. Thus,
e design a novel ‘‘Split–Squeeze–Excitation–Union’’ (SSEU) module for

eature matching.
It is worth pointing out that, although SK-Net and ResNeSt adopt

imilar split feature-map operation as our network, they are signifi-
antly different. Specifically, SK-Net and ResNeSt adopt a split–merge
peration for making attention across the feature-map group while our
etwork employs a split–union operation to learn contextual informa-
ion from different aspects. Then, SK-Net and ResNeSt are designed
or image data, thus, their networks involve the convolution layer and
ooling layer to extract and compress image information. Note that,
hese two layers require the input order information provided by their
etworks (while the input data for feature matching is unordered).
n contrast, our network is based on MLP and only contains a global
ooling layer to capture the contextual information. That is, our net-
ork is permutation-equivariant and does not have the requirement.

n addition, our network contains Context Normalization, which fol-
ows each MLP to further exploit the geometrical context of putative
orrespondences. Therefore, our network is much more effective than
K-Net and ResNeSt, to provide a clear leap in dealing with sparse and
83

nordered data, for the feature matching tasks.
3. Method

In this section, we design an iterative permutation-equivariant net-
work (called PESA-Net) to handle the outlier rejection and geometry
estimation problem. In the following, we introduce the problem formu-
lation in Section 3.1, describe the proposed SSEU module in Section 3.2,
and discuss our network architecture in Section 3.3.

3.1. Problem formulation

Given image pairs, our goal is to reject outliers from putative
correspondences and recover the relative pose. More specifically, we
firstly adopt handcrafted features (e.g., SIFT [8], ORB [16], EIR [37]) or
learning-based features (e.g., Lift [17], SuperPoint [18]) to establish pu-
tative correspondences. After that, we remove outliers by our network
and establish geometrically consistent correspondences by weighted
eight-point algorithm. The input data is 𝑁 putative correspondences
established by handcraft or learned features:

𝐷 = [𝑑1;… ; 𝑑𝑖;… ; 𝑑𝑁 ], 𝑑𝑖 = [𝑥𝑖1, 𝑦
𝑖
1, 𝑥

𝑖
2, 𝑦

𝑖
2], (1)

where 𝑑𝑖 represents a correspondence; (𝑥𝑖1, 𝑦
𝑖
1) and (𝑥𝑖2, 𝑦

𝑖
2) are keypoint

oordinates in the range of [−1, 1] normalized by camera intrinsics for
wo images.

In our work, the outlier rejection and two-view geometric esti-
ation tasks are treated as the inlier/outlier classification problem

nd the essential matrix regression problem. Specifically, given the
nput correspondence set 𝐷, our network outputs the probability set
𝑃𝑅 = [𝑤1,… , 𝑤𝑖,… , 𝑤𝑁 ]. The probability 𝑤𝑖 ∈ [0, 1] is assigned

o correspondence 𝑑𝑖, where 𝑑𝑖 is predicted an outlier if 𝑤𝑖 = 0;
therwise 𝑑𝑖 is predicted an inlier. Then, we adopt a weighted eight-
oint algorithm [9] to directly regress the essential matrix. That is,
iven a set of 𝑄 image pairs with the corresponding putative sets
𝐷𝑞}

𝑄
𝑞=1, we design a deep neural network to learn a function 𝑓 , and

e write the architecture as:
∀𝑞, 1 ≤ 𝑞 ≤ 𝑄,𝑁𝑊𝑞 = 𝑓𝜑(𝐷𝑞),

𝑤𝑞 = 𝑡𝑎𝑛ℎ(𝑅𝑒𝐿𝑈 (𝑁𝑊𝑞)),

𝐸̂𝑞 = 𝑔(𝑤𝑞 , 𝐷𝑞),

(2)

here 𝑁𝑊𝑞 represents the logit values for classification; 𝑓𝜑(⋅) denotes a
ermutation-equivariant neural network; 𝜑 is the network parameters;
𝑞 denotes the weight of correspondence 𝐷𝑞 ; 𝑡𝑎𝑛ℎ and 𝑅𝑒𝐿𝑈 are

wo activation functions for helping remove outliers [9]; 𝑔(⋅, ⋅) is the
eighted eight-point algorithm which takes the corresponding weight
𝑞 and the corresponding putative correspondence 𝐷𝑞 to compute the
ssential matrix 𝐸̂𝑞 .

3.2. Split–squeeze–excitation–union module

In this subsection, we propose a novel attention mechanism, i.e., the
SSEU module, to capture the rich global contextual information of
sparse correspondences. Specifically, we implement the SSEU module
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Fig. 3. The architecture of the proposed SSEU module.
via four operations, i.e., split, squeeze, excitation and union, as illustrated
in Fig. 3, where the four-path case in shown.

Split : We first split feature-maps of putative correspondences, to
capture the rich global contextual information. That is, for giving
feature-map 𝐹 ∈ R𝑁×𝐶 , we first split it into 𝑆 groups of feature-
map 𝐹𝐺 ∈ R𝑁×𝐶∕𝑆 , where 𝐶 denotes the feature-map size of channel
dimension. In this manner, we can generate multiple paths to exploit
the geometrical context of putative correspondences from different
aspects.

Squeeze: As mentioned in the Introduction, establishing reliable cor-
respondence requires rich contextual information. Although, Context
Normalization follows MLP in our SSEU module, it is not enough to
capture full latent spatial relations (i.e., contextual information). To
address this issue, in each feature-map group, we employ the squeeze
manner to achieve global spatial information of correspondence fea-
tures. More specifically, for each feature-map group, the global average
pooling is adopted to generate channel-wise contextual descriptor. Note
that, SE-Net and SK-Net also adopt a similar operation to capture
channel-wise information, for image stylization; while our operation
differs from them since our SSEU module is followed by MLP and
the feature-map is permutation-equivariant for correspondences, that
is, our operation is used to extract global contextual information of
each correspondence. In contrast, the operation of SE-Net or SK-Net
is followed by convolution units, where latent semantic information
of each correspondence is destroyed. Thus, they only can employ the
global average pooling to capture channel-wise information of feature
maps. Therefore, for the squeeze operation, given the 𝑠th 𝐹𝐺 and
the 𝑐th layer feature-map, we obtain the global contextual embedded
channel-wise information 𝑔𝑐𝑐𝑠 as follows:

𝑔𝑐𝑐𝑠 = 1
𝑁

𝑁
∑

𝑖=1
𝐹𝐺𝑐

𝑖 , (3)

Excitation: To exploit the information obtain by the squeeze opera-
tion in each feature-map group, we follow it with two MLPs to learn
the weight of global contextual:

𝑔𝑐′𝑐𝑠 = 𝑀(𝑀𝛽𝛾 (𝑔𝑐𝑐𝑠 )), (4)

where 𝑀 denotes single MLP. 𝑀𝛽𝛾 is the learning strategy with Batch
Normalization and ReLU function. 𝑔𝑐′𝑐𝑠 is the learning result. After that,
we use a sigmoid to enhance weight 𝑔𝑐′ and the final feature-map group
𝑉𝑠 is:

𝑉 𝑐
𝑠 =

𝑆
∑

𝑠=1
𝑔𝑐′𝑐𝑠 × 𝐹𝐺𝑐

𝑠 , (5)

Union: The split operation is used to divide feature-maps into several
feature-map groups, and the squeeze and excitation operation are used
84
to capture global contextual on feature-map groups. Then, to combine
and aggregate the geometrical context information from multiple paths,
we design an effective operation to unite information of all feature-map
groups. SK-Net and ResNeSt adopt a summation operation to do that, but
it is ill-suit for correspondences due to a mass of existing outliers. Thus,
in this step, we adopt a union manner to aggregate all the feature-map
groups. Formulation, we concatenate all the feature-map groups and
get the final feature-maps:

𝑉 = 𝐶𝑎𝑡{𝑉1, 𝑉2,… , 𝑉𝑆}, (6)

3.3. Network architecture

In this subsection, we describe the proposed PESA network, which
consists two important blocks, i.e., the Permutation-Equivariant Split
Attention (PESA) block and Geometric Attention block, as shown in
Fig. 2.

3.3.1. PESA block
PESA-Block is based on our proposed SSEU module in Section 3.2,

and it also contains two MLP layers to extract the correspondence
features in canonical order of initial correspondences. The Context
Normalization formula is described as following:

𝐶𝑁(𝑓 𝑙
𝑖 ) =

𝑓 𝑙
𝑖 − 𝑢𝑙

𝑜𝑙
, (7)

where 𝑓 𝑙
𝑖 is the output of the 𝑖th correspondence feature in the 𝑙th layer

of MLP. 𝑜𝑙 and 𝑢𝑙 represent standard deviation and mean, respectively.
Then, the Batch Normalization and ReLU activation function are

followed by Context Normalization. The PESA block is able to exploit
the complex global context of sparse and unordered correspondence
data.

3.3.2. Geometric Attention block
The Geometric Attention block includes three parts, i.e., Differen-

tiable Pooling Layer [14], Order and Aware Filtering block, and Differ-
entiable Unpooling layer [11]. Specifically, the Differentiable Pooling
Layer first adopts a soft assignment matrix to map the input putative
correspondences into a set of clusters. Next, the Order-Aware Filtering
block exploits the cluster relation with spatially-correlated operations.
At last, the Differentiable Unpooling layer is employed to assign per-
correspondence predictions. Note that the Geometric Attention block is
permutation-equivariant for the input putative correspondences.

We employ 6 PESA blocks with a Geometric Attention block to
build a sub-network. The inputs of the first iterative sub-network are
𝑁 × 4 putative correspondences established by using nearest-neighbor
matching of SIFT feature descriptor, usually 𝑁 = 2000. The inputs of
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the second iterative sub-network are 𝑁×6, which contains the putative
correspondences, residuals and weights: the putative correspondences
(𝑁×4) are the same as the input data of the first sub-network; the resid-
uals and weights, which inherit from the first iterative sub-network, are
the 5 and 6 rows, respectively.

.3.3. Loss function
We construct a hybrid loss function by a classification loss and a

eometry loss [10,38]:

(𝐷𝑞) = 𝑙𝑐 (𝑤𝑞 , 𝐿𝑞) + 𝛽𝑙𝑔(𝐸̂𝑞 , 𝐸𝑞), (8)

here 𝐿(⋅) represents the hybrid loss. 𝑙𝑐 (⋅, ⋅) is a binary cross entropy
oss. 𝑤𝑞 and 𝐿𝑞 denote the corresponding weight and label, respec-
ively. 𝑙𝑔(⋅, ⋅) represents a geometry loss between the predicted essential
atrix 𝐸̂𝑞 and the ground truth essential matrix 𝐸𝑞 generated by
isualSFM [39]. 𝛽 denotes the weight to balance the classification loss
nd the geometry loss.

The binary cross entropy loss is computed as:

𝑐 (𝑤𝑞 , 𝐿𝑞) =
1
𝑁𝑞

𝑁𝑞
∑

𝑖=1
𝜅𝑖
𝑞𝐻(𝑆(𝑤𝑖

𝑞), 𝐿𝑞), (9)

where 𝑆(⋅) represents the logistic function used with the binary cross-
entropy 𝐻 . 𝜅𝑖

𝑞 denotes a self-adaptive weight to balance the posi-
tive/negative ratios.

The weakly supervised 𝐿𝑞 is defined by a geometric distance as
follows:

𝑑𝑖𝑠𝑡(𝑑𝑞 , 𝐸𝑞) =
(𝑝′𝑇𝑞 𝐸𝑞𝑝𝑞 )

2

‖𝛾𝑞‖2[1]+‖𝛾𝑞‖
2
[2]+‖𝛾

′
𝑞‖

2
[1]+‖𝛾

′
𝑞‖

2
[2]
,

𝛾𝑞 = 𝐸𝑞𝑝𝑞 , 𝛾 ′𝑞 = 𝐸𝑇
𝑞 𝑝

′
𝑞 ,

(10)

where 𝑝𝑞 and 𝑝′𝑞 indicate two keypoint positions from the putative
correspondence 𝑑𝑞 . 𝐴[𝑖] represents the 𝑖th element of vector 𝐴. More
specifically, we set the geometric distance less 10−4 as 𝐿𝑞 = 1, and
𝐿𝑞 = 0 otherwise. The weakly supervised label 𝐿𝑞 for a correspondence
is able to avoid prohibitively expensive annotation. For the geometry
loss 𝑙𝑔(𝐸̂𝑞 , 𝐸𝑞), we utilize the geometric based distance to define it:

𝑙𝑔(𝐸̂𝑞 , 𝐸𝑞) =
𝑄
∑

𝑞=1

(𝑝′𝑇𝑞 𝐸̂𝑞𝑝𝑞)
2

‖𝛾𝑞‖2[1] + ‖𝛾𝑞‖2[2] + ‖𝛾 ′𝑞‖
2
[1] + ‖𝛾 ′𝑞‖

2
[2]

. (11)

It is worth pointing out that, inspired by Iteratively Reweighed least-
squares algorithm and DFE-Net [10], our network adopts an iterative
manner to establish reliable correspondences. As shown in Fig. 2,
two sub-networks are involved in our network, and the second iter-
ative sub-network inherits the weights and residuals from the first
sub-network.

4. Experimental results

In the section, we compare the proposed PESA-Net with a de facto
standard of handcraft method (i.e., RANSAC [19]) and several state-
of-the-art methods, including Point-Net++ [40], LGC-Net [9], DFE-
Net [10], OA-Net++ [11] and ACNe-Net [12] on two tasks. Two
publicly available datasets (i.e., YFCC100M dataset [13] and SUN3D
dataset [15]) are employed both in the camera pose estimation and
outlier rejection task. In the following: we first introduce the details of
two datasets. After that, we expound the evaluation metrics on camera
pose estimation and outlier rejection tasks, respectively, and then we
discuss the implementation details and experiment results on two tasks.
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Finally, we analyze the ablation study.
4.1. Datasets

4.1.1. Outdoor scenes
We evaluate the performance of the seven methods on camera

pose estimation using the Yahoo YFCC100M dataset [13]. YFCC100M
dataset contains 100 million publicly accessible images from internet.
J. Heinly et al. [41] made it into 72 tourist landmarks image collections
for Structure from Motion (SfM). Following the previous work in [11],
we separate the YFCC100M dataset into 68 sequences for training
model and 4 sequences (i.e., Reichstag, Buckingham palace, Notre
dame front facade and sacre coeur) as the unknown scenes for testing
generalization ability.

4.1.2. Indoor scenes
For the indoor scene dataset, we use the SUN3D dataset [15], which

is an RGBD video dataset captured with a kinect. Following [11],
we keep a sample interval per 10 frames. Finally, we get 253 image
sequences about different indoor scenes, where 15 sequences are used
as unknown scenes for testing and the remaining 238 sequences for
training model.

In this work, we evaluate the performance on camera pose estima-
tion both in outdoor scenes (i.e., YFCC100M dataset) and indoor scenes
(i.e., SUN3D dataset). More specifically, we test both known scenes and
unknown scenes. For the known scenes, the training sequences are split
into three subsets (i.e., training (60%), validation (20%), and testing
(20%)). The unknown sequences are the testing sequences mentioned
above.

4.2. Evaluation metrics

For camera pose estimation, our goal is obtaining an essential matrix
which is to the greatest extent with the ground truth. We use the
angular difference between the predicted vectors and ground truths
for both rotation and translation as the error metric. Thus, the mean
average precision (mAP) on both rotation and translation is employed
for evaluating the result. Moreover, we adopt precision (P), recall (R),
and F-measure (F) as the evaluation criteria for outlier rejection.

4.3. Implementation details

The optimizing strategy of our network is Adam [42] with the
learning rate of 10−3. Moreover, we set the batch size of input data
as 32. The parameter 𝛽 of the geometry loss is set as 0 during the first
20𝑘 iterations and then we set it to 0.1 in the rest 480𝑘. All experiments
are performed on Linux 3.10.0 with NVIDIA TESLA 𝑃 100 GPUs.

4.4. Camera pose estimation

We compare our method with five state-of-the-art methods, (i.e.,
Point-Net++ [40], LGC-Net [9], DFE-Net [10], OA-Net++ [11] and
ACNe-Net [12]) on outdoor and indoor datasets. We also use RANSAC
[19] as baseline. All these methods are trained under the same settings.
For Point-Net++, we adopt 4D Euclidean space as the underlying metric
space. DFE-Net is designed for fundamental matrix estimation, and
we employ essential matrix instead of fundamental matrix to recover
camera pose, by setting the regression target as essential matrix. LGC-
Net and OA-Net++ (an improved version of OA-Net) are the official
implementations. For ACNe-Net, we re-implemented based on PyTorch
with the help of authors.

We report the results in Table 1, where the mAP at error thresholds
5◦, 10◦ and 20◦ are reported on two datasets with known and unknown
scenes. Following [11], we mainly analyze the error thresholds with
5◦. From Table 1, we can see that our network consistently achieves
the best results under all testing, showing improvements of 28.04%
and 27.14% over the baseline LGC-Net on both outdoor known and

unknown scenes, and we also achieve significantly improvements on
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Table 1
Performance comparison for camera pose estimation on YFCC100M and SUN3D datasets.

Datasets YFCC100M (%) SUN3D (%)

Methods Known scene Unknown scene Known scene Unknown scene

5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

RANSAC 5.74 9.75 16.67 9.05 14.19 22.71 4.43 8.26 15.38 2.85 5.61 11.23
Point-Net++ 11.88 20.47 32.86 15.98 28.00 44.82 8.78 17.01 31.02 7.22 16.10 29.77
LGC-Net 14.51 23.15 35.82 23.71 36.37 50.57 11.93 22.16 36.03 9.73 19.51 33.09
DFE-Net 19.27 29.25 42.14 30.55 43.95 59.15 14.18 24.35 39.14 12.13 21.78 36.26
ACNe-Net 29.63 40.42 52.71 34.00 48.46 62.98 19.08 30.96 46.32 14.27 24.74 39.29
OA-Net++ 33.54 45.09 57.75 39.95 53.96 67.79 20.91 32.80 48.09 16.88 27.37 41.87
PESA-Net 42.55 53.93 65.61 50.85 63.70 75.02 24.22 36.48 51.50 19.21 30.59 45.23

Point-Net++a 34.09 44.80 57.13 46.73 57.02 67.83 20.31 30.49 43.97 15.97 24.51 36.18
LGC-Neta 34.27 44.56 56.27 46.93 57.38 68.11 20.64 30.76 44.11 16.04 24.74 36.92
DFE-Neta 36.93 47.34 59.25 51.38 60.99 70.97 21.44 31.56 44.92 16.35 25.28 37.85
ACNe-Neta 41.60 52.54 64.15 52.05 62.19 72.34 22.33 33.10 46.80 17.03 26.51 39.11
OA-Net++a 42.49 53.02 64.85 53.53 63.51 73.92 22.44 33.35 47.30 17.24 26.66 39.41
PESA-Neta 46.03 56.69 68.13 55.38 65.95 76.01 23.42 34.15 48.20 18.32 28.04 41.03

aMethods means using RANSAC [19] for post-processing.
Table 2
Comparative results of outlier rejection on the YFCC100M and SUN3D datasets.

Datasets YFCC100M (%) SUN3D (%)

Methods Known scene Unknown scene Known scene Unknown scene

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

RANSAC 47.44 52.64 49.90 43.51 50.68 46.82 51.82 56.43 54.03 44.89 48.68 46.71
Point-Net++ 49.84 86.41 63.22 46.60 84.17 59.99 51.40 86.73 64.54 44.79 83.23 58.23
LGC-Net 56.64 86.30 68.39 54.67 84.76 66.47 51.64 88.51 65.23 43.95 83.71 57.64
DFE-Net 56.61 87.04 68.60 53.93 85.52 66.15 53.88 87.20 66.61 46.21 84.07 59.64
ACNe-Net 59.99 88.81 71.61 55.54 85.38 67.30 54.03 88.45 67.08 45.97 83.94 59.40
OA-Net++ 60.96 88.79 72.29 56.70 85.49 68.18 54.59 88.60 67.56 46.84 84.44 60.26
PESA-Net 63.09 90.08 74.21 59.18 86.61 70.31 55.75 88.68 68.46 48.22 84.59 61.42
r
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t
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indoor dataset. It is worth pointing out that OA-Net++ is the cur-
rent work with stat-of-the-art performance and ACNe-Net is the latest
network. Compared with the OA-Net++ and ACNe-Net, our network
also outperforms them at least 9.01% and 10.9% mAP increasing in
YFCC100M known and unknown scenes.

We also evaluate our network with RANSAC for post-processing,
which is the most classical method for outlier rejection. As reported
in Table 1, the post-processing strategy can boost the performance
of most of competing methods. Note that, our network has not been
improved so obviously as other competing networks. The reason behind
this is that our network has a stronger ability to remove outliers, thus,
the post-processing strategy only has slight boosting or even declines
the performance. In particular, we also observe that RANSAC harms
the performance on indoor scenes, which is an extremely challenging
dataset. Its performance with our network on known and unknown
scenes drops about 0.8% and 0.89% on SUN3D dataset. This is because,
through PESA Block and Geometric Attention Block, our network is able
o effectively infer the relative importance of each correspondence.
owever, RANSAC is often interested in the maximum co-consist set
nd may remove some critical inliers.

.5. Outlier rejection

In this subsection, we test all competing methods on the task of
utlier rejection. As the setting in pose estimation, we evaluate our
etwork on two challenging datasets (i.e., YFCC100M and SUN3D) and
s mentioned above, we employ precision (P), recall (R), and F-measure
F) as the evaluation criteria.

We report the quantitative results of different approaches in Table 2.
ESA-Net clearly outperforms all existing methods on both two chal-
enge datasets. Moreover, OA-Net++ and ACNe-Net surpass other three
earning-based methods (i.e., Point-Net++, LGC-Net, DFE-Net) because
hey can capture more contextual information. Note that, our PESA-Net
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an extract latent spatial relations from different aspects. Therefore, it i
Table 3
Comparative results of our PESA-Net with different 𝑆 on YFCC100M. The results of
mAP (%) at error thresholds 5◦, 10◦ and 20◦ on unknown scenes are reported. #P and
M represent Parameters and Million, respectively.

PESA-Net 5◦ 10◦ 20◦ #P GFLOPs

𝑆 = 1 47.52 60.06 72.09 2.36M 1.49
𝑆 = 2 48.15 61.48 73.46 2.51M 1.79
𝑆 = 4 50.85 63.70 75.02 2.87M 2.40

is able to perform better than OA-Net++ and ACNe-Net. We show some
typical results of our network and other comparative methods in Fig. 4.
Clearly, our network is able to achieve the best performance on several
challenging scenes.

4.6. Ablation study

4.6.1. Parameter analysis
The critical parameter of our method is the number of split feature-

map groups, i.e., 𝑆. As shown in Fig. 3, the more split feature-map
groups mean that they own stronger capacity to capture richer contex-
tual information; while it also will cost more time. Here we test the
performance of our network on the YFCC100M unknown scenes with
different numbers of split feature-map groups i.e., 𝑆 = 1, 2 and 4, and
eport the results in Table 3. We can see that, our network with 𝑆 = 4
s able to improve at least 2% on the thresholds 5◦, 10◦ and 20◦ over
he version with 𝑆 = 1. In addition, our network improves the mAP of
he version with 𝑆 = 2 from 48.15%, 61.48% and 73.46% to 50.85%,
3.7%, 75.02% on three thresholds, respectively. This can further show
he effectiveness of using the SSEU module in our network.

Nevertheless, from Table 3, we can also see that our network
nevitably introduces a slightly increase in parameter and computation
ith the number of split feature-map groups. However, we cannot

gnore that the increased complexity does bring better accuracy. To
alance the effectiveness and efficiency of our network, we set 𝑆 = 4
n our experiment and do not adopt more split groups in our work.
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Fig. 4. Visualization results on two challenging datasets, i.e., YFCC100M dataset, SUN3D dataset. From top to bottom: Reichstag, Buckingham-palace and Te-harvard1. We draw
the correspondences in green if they conform to the ground-truth epipolar geometry, and in red otherwise. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 4
Ablation study on YFCC100M. The results of mAP (%) under error thresholds of 5◦

on both known and unknown scenes (with/without RANSAC post-processing) are
reported. Geo: using the Geometric Attention Block. Iter: using the iterative network.
PE-S: using PESA block with summation operation rather than PointCN blocks. PE-U:
using PESA block with union operation rather than PointCN blocks.

PointCN Geo Iter PE-S PE-U Known Unknown

� 14.51/34.27 23.71/46.93
� � 25.18/40.36 32.36/51.22
� � � 33.54/42.49 39.95/53.53

� � � 39.16/44.87 46.93/54.02
� � � 42.55/46.03 50.85/55.38

4.6.2. SSEU module analysis

In our SSEU module, we propose to use an union operation to gather
geometrical context information from multiple paths. Note that, both
of SK-Net [35] and ResNeSt [36] adopt a summation operation to do
87
that. To show the effectiveness of our union operation, we test different
versions of our network and show the results in Table 4. We can see
that, when we adopt the summation operation, the network without
using RANSAC achieves 46.93% with the mAP thresholds of 5◦ on the
YFCC100M unknown scenes. In contrast, our network with the union
operation is able to achieve 50.85%. Thus, the union operation can
effectively improve the feature matching performance.

4.6.3. Camera pose estimation with learned features
Here, we use the state-of-the-art learned feature method, i.e., Su-

perPoint [18], to construct correspondences and report the result on
two benchmarks (i.e., YFCC100M and SUN3D). Different from SIFT,
SuperPoint is an end-to-end network for detecting keypoints and de-
scriptions. We employ the pre-trained model provided by the author to
gain keypoint positions and local descriptors and generate the putative
correspondences by nearest-neighbor matching. The rest settings are
set as the same as previous experiments in Section 4. As reported in
Table 5, we observe that Superpoint gives better results on RANSAC or
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Table 5
Performance comparison for camera pose estimation on YFCC100M and SUN3D
datasets.

Datasets YFCC100M (%) SUN3D (%)

Methods Known Unknown Known Unknown

SIFT

RANSAC −/5.74 −/9.05 −/4.43 −/2.85
LGC-Net 14.51/34.27 23.71/46.93 11.93/20.64 9.73/16.04
ACNe-Net 29.63/41.60 34.00/52.05 19.08/22.33 14.27/17.03
OA-Net++ 33.54/42.49 39.95/53.53 20.91/22.44 16.88/17.24
PESA-Net 42.55/46.03 50.85/55.38 24.22/23.42 19.21/18.32

SuperPoint

RANSAC −/12.87 −/17.48 −/14.51 −/12.20
LGC-Net 17.18/31.37 28.25/43.68 13.63/22.39 11.68/17.81
ACNe-Net 28.90/35.43 34.08/46.73 20.72/23.66 14.83/18.36
OA-Net++ 29.66/35.19 35.35/45.53 20.12/23.55 15.88/18.73
PESA-Net 35.70/37.99 43.58/48.15 21.21/24.36 16.33/19.16

Fig. 5. The results of ratio test on YFCC100M unknown sequences under error
thresholds of 5◦, 10◦ and 20◦.

LGC-Net and worse results than SIFT on our method. The main reason
is that SuperPoint has better descriptors but is limited by the accuracy
of keypoints. That is, SuperPoint can offer putative correspondence set
with a higher inlier ratio. When inlier ratio large improvement, the key
point array will become the main bottleneck. Nevertheless, for different
local features, our method consistently achieves the best performance.

4.6.4. Impact on the ratio test
Lowe’s ratio test can filter out non-discriminative matches, with a

threshold ∈ [0, 1]. To test the impact of the threshold of ratio test, we
set the ratio test threshold as 1, 0.95, 0.9, 0.85 and 0.8 in the PESA-

et with RANSAC, respectively. As reported in Fig. 5, the ratio test
an boost the performance of PESA-Net when the ratio test threshold
s suitable, degrade without. When the threshold is 0.95, PESA-Net is
ble to get the best performance.

.6.5. Impact on the post-processing
Post-processing is a critical step in post estimation. In this subsec-

ion, we study RANSAC and its variants (i.e., DEGENSAC) as post-
rocessing. We select three representative networks (i.e., LGC-Net,
CNe-Net, OA-Net++) and our network as the front-end network of
ANSAC and its variants. In addition, we also adopt Lowe’s ratio test

o boost the performance of post estimation. As shown in Table 6,
ANSAC can get superior performance as the post-processing when
88

omparing with DEGENSAC. r
Table 6
Performance of our network and baselines combining with different post-processing
on the YFCC100M and SUN3D datasets. The mAP performance at error threshold
5◦ and 20◦ are reported. R: using RANSAC post-processing. D: using DEGENSAC
post-processing.

Datasets YFCC100M (%) SUN3D (%)

5◦ 20◦ 5◦ 20◦

Methods R/D R/D R/D R/D

LGC-Net 50.93/49.63 70.62/68.74 16.74/15.95 38.48/35.71
OA-Net++ 54.08/54.63 74.75/73.76 17.71/17.12 39.89/37.50
ACN-Net 53.08/51.28 72.65/70.12 17.01/16.33 38.20/36.32
PESA-Net 56.88/55.43 76.59/74.78 17.84/17.21 40.87/38.56

Table 7
Comparison with Graph Neural Networks. The results of mAP (%) under error thresholds
of 5◦ on both outdoor and indoor unknown scenes with 512 keypoints are reported.

Methods YFCC100M SUN3D #P GFLOPs

RANSAC 18.45 12.07 – –
SuperGlue 43.17 16.09 12.02M 19.59
PESA-Net 46.20 17.52 2.87M 0.83

4.6.6. Comparison with Graph Neural Networks
Graph Neural Networks are also important methods to establish

reliable correspondences. Here we compare our method with Super-
Glue [29] which is one of the most popular Graph Neural Network
for feature matching, and we also run RANSAC as a baseline. For Su-
perGlue, we employ the official pre-trained model of SuperGlue to test
the performance, since the authors have not provided a training code.
To have a fair comparison, we employ the pre-trained model train on
Section 4.6.3 to evaluate the performance of PESA-Net. Following [29],
we achieve the pose by estimating the essential matrix with OpenCV’s
findEssentialMat and RANSAC for post-processing. Additionally, Super-
Glue gives suboptimal results on 2000 SuperPoint keypoints, thus, we
detect 512 keypoints per image. From Table 7, we can see that our
network not only uses significantly fewer parameters, but also works
well with Graph Neural Networks under the same settings.

5. Conclusion

In this paper, we have designed a novel SSEU module, which is used
to build a Permutation-Equivariant Split Attention Network (PESA-Net)
for correspondence learning. The proposed SSEU module is able to
gather rich contextual information from different aspects in a permu-
tation invariant manner, by generating multiple paths and adopting
channel-wise dependence. In addition, we also construct a permutation-
equivariant block by fusing the SSEU module, Multi-Layer Percep-
tron and some normalizations, to solve problems on permutation-
equivariant correspondence data. Our experiments have shown that
PESA-Net achieves significant improvement over existing approaches
for addressing the camera pose estimation and outlier removal tasks
on outdoor and indoor datasets.

In addition, PESA-Net adopts the iterative manner since it can
extremely boost the performance for outlier rejection. Nevertheless,
we find that a large amount of information in the previous iteration
is not fully exploited, and only the last iteration result is used as the
predicted weight. Therefore, for future research directions, we consider
improving the iterative network to comprehensively utilize all the
information of iterations.
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