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A B S T R A C T

Multimodal image matching, which refers to identifying and then corresponding the same or similar struc-
ture/content from two or more images that are of significant modalities or nonlinear appearance difference,
is a fundamental and critical problem in a wide range of applications, including medical, remote sensing
and computer vision. An increasing number and diversity of methods have been proposed over the past
decades, particularly in this deep learning era, due to the challenges in eliminating modality variance and
geometrical deformation that intrinsically exist in multimodal image matching. However, a comprehensive
review and analysis of traditional and recent trainable methods and their applications in different research
fields are lacking. To this end and in this survey, we first introduce two general frameworks, saying area-
and feature-based, in terms of their core components, taxonomy, and procedure details. Second, we provide
a comprehensive review of multimodal image matching methods from handcrafted to deep methods for
each research field according to their imaging nature, including medical, remote sensing and computer
vision. Extensive experimental comparisons of interest point detection, description and matching, and image
registration are performed on various datasets containing common types of multimodal image pairs that
we collected and annotated. Finally, we briefly introduce and analyze several typical applications to reveal
the significance of multimodal image matching and provide insightful discussions and conclusions to these
multimodal image matching approaches, and simultaneously deliver their future trends for researchers and
engineers in related research areas to achieve further breakthroughs.
. Introduction

General image matching, as defined in related surveys [1,2], aims
o identify and then correspond the same or similar structure/content
rom two or more images. A more practical purpose is to geometrically
arp a moving (sensed or target) image into the common spatial

oordinate system of a fixed (reference or source) image and align
heir common area in pixel, i.e., image registration or alignment. Mul-
imodal image matching (MMIM) sometimes termed as Multimodal
mage registration (MMIR) can be seen as specific cases in the image
atching community. A more universal definition is that the targets to

e matched have significant nonlinear appearance differences that are
ypically caused by different (not limited to) imaging sensors, or by dif-
erent imaging conditions (such as day–night [3–5], cross-weather [6],
ross-season [7]), and input data types (such as image–paint–sketch [8,
], and image–text [10–12]).
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MMIM has taken a significant role as a preprocedure requirement in
many research areas and high-level tasks. Its most direct purpose is to
identify and gather a wide range of physical properties from different
modalities, thereby yielding richer scene representations by means of
image registration and fusion [13,14]. Another goal is to recognize
the differences or connections among the input images for change
detection [15], target recognition/tracking [16–18], and cross-modality
person re-identification [19–22]. In addition, the images captured from
another modality would serve as a supplementary information supplier
to achieve advanced performance in 3D reconstruction [23] and image
localization (such as simultaneous localization and mapping, and place
recognition) [7,24,25]. In medical domains such as radiation planning,
multimodal data (e.g., computed tomography (CT) and magnetic res-
onance imaging (MRI) scans) are often used for more accurate tumor
contouring, thus reducing the risk of damaging healthy tissues during
radiotherapy treatment [26,27].
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Increasing efforts have been made to propose advanced technologies
over the past decades because of the high-performance requirement for
MMIM or MMIR in these practical applications. As many researchers
suggested, a more acceptable taxonomy for existing methods is area-
and feature-based pipelines [1,2]. An area-based framework generally
registers the image pairs under the guidance of a similarity metric that
can measure the accuracy of image alignment to drive the optimization
of the registration procedure. By contrast, feature-based framework is
more steerable in the general image matching task and related applica-
tions. Such methods commonly start with distinctive feature extraction
and then match the features with/without feature description, followed
by a transformation model estimation and image resampling and warp-
ing, thus achieving image registration. Feature-based pipeline is used
more widely due to its flexibility, robustness, and capability in a wide
range of applications [2]. In recent years, deep learning has made dra-
matic progress on a wide range of complex tasks. Numerous researchers
and engineers have also successfully addressed the image matching
problem with a data-driven strategy. Learning-based methods can ac-
tually be regarded as a direct replacement of traditional frameworks
in information extraction and representation, similarity measurement,
and transformation parameter regression. Even though there exist many
systematic and promising approaches for MMIM, it remains an open
problem to develop a general pipeline with promising performance in
accuracy, robustness, and efficiency due to the following challenges:

– The first limitation is insufficient or unavailable image data of
different modalities. No complete and comprehensive database
contains all types of multimodal image pairs together with their
ground truths. To our knowledge, researchers in the medical
field have provided sufficient multimodal volumes of different
imaging devices and/or targets, but not in the remote sensing and
computer vision communities.

– Area-based methods highly depend on the appropriate choices
of similarity metric, geometrical transformation model, and op-
timization method. However, these components are also largely
affected by overlapping areas and image contents [2]. This situa-
tion would be worse in the multimodal case due to the serious
nonlinear intensity variance between two images of different
modalities. In addition, these methods are extremely time con-
suming in the case of high-resolution image pairs or even fail if
the image pairs undergo large deformations.

– The core challenges in feature-based pipeline are feature de-
tection and description from multimodal image pairs owing to
their nonlinear intensity difference. In this case, many widely
used feature matchers proposed for general vision applications
would be out of operation. Other limitations in this framework are
consistent with those in general image matching tasks, such as the
combinational nature in corresponding two feature sets, which
would create a heavy computational burden, or the inevitable
heavy outliers (mismatches) that appear in putative matches due
to the use of local image information only.

– The deep learning framework has shown great potential in MMIM
problem, but it still faces several challenges as introduced in [2,
28]. On the one hand, learning from images to directly perform
image registration would be limited by the large geometrical
deformations and high-resolution images. On the other hand,
learning from sparse point data with convolutional strategy is
still a challenging problem due to the disordered and dispersed
nature of point data. In addition, this approach is limited by the
insufficient real data for training to obtain a satisfying match-
ing/registration model.

– Each pair of image modality has its own difficulties that differ
from others due to the variance of imaging device and property.
This would make it difficult to propose a universal paradigm
to well address image registration for these common types of
modalities from medical, remote sensing, and computer vision
23

research areas simultaneously. o
Few works specifically review MMIM methods and applications
that simultaneously contain medical, remote sensing, and computer
vision research. Existing surveys mainly focus on a general image
matching or registration task, and only briefly introduce the multi-
modal case as a subsection [1,2,28–30]. Most works focus on medical
image registration to deliver specific instruction, either aiming at 3D–
2D registration [31,32], deformable registration [29], or registration
of different objects such as breast [33,34], brain [35], and vascu-
lar [36]. Others typically review implementations [37,38] or deep
learning frameworks [28,30]. Two survey papers related to remote
sensing image matching were briefly introduced in [39,40]. In this
regard, we provide an up-to-date and comprehensive review of existing
MMIM methods and applications in the medical, remote sensing, and
computer vision research areas, especially for the recently introduced
learning-based methods.

The overall structure of this survey is presented in Fig. 1. In
Section 2, we introduce two general frameworks that are commonly
used in image matching-area-based and feature-based-to provide an
overview of the components and flowcharts. We also review these
commonly used ideas from handcrafted to deep learning techniques and
analyze how they are extended to multimodal cases. In Section 3, we
present a detailed review of multimodal image matching methods in re-
gard to different research fields, including medical, remote sensing, and
computer vision. In Sections 4 and 5, we respectively provide a compre-
hensive analysis of experimental evaluation and related applications. In
Section 6, we conclude and discuss possible future developments.

2. General frameworks of image matching

As aforementioned, MMIM can be seen as a specific case in the
general image matching community. In addition to the appearance
difference, MMIM will face similar challenges that appear in general
image matching tasks, i.e., complex geometrical deformation, poor
image quality, and high computation and storage burden. Therefore,
we will first comprehensively introduce general matching frameworks
following the taxonomy in [1,2], namely, area-based and feature-based
pipelines. In each category, we will emphatically review the core idea
of classical and recently published methods, particularly those that use
learning techniques, then introduce the extensions of these ideas to
multimodal cases and deliver their connections.

2.1. Area-based pipeline

An area-based pipeline aims to realize image registration by us-
ing the intensity information of entire images. Generally, given a
predefined transform model, a similarity metric together with an opti-
mization method is required to estimate the transform parameters and
then align the common area of two images by optimizing the overall
cost function. This cost function is usually created by the similarity
measurement between a fixed image and a warped moving image,
thereby enabling the accuracy of image alignment to be measured. A
general goal of this framework can be formulated as the following form:

 ∗ = argmin


(𝐼𝐹 , 𝐼𝑀◦ ) +( ), (1)

where  indicates the transformation model from moving image 𝐼𝑀 to
fixed image 𝐼𝐹 , and  qualifies the level of alignment between them.

regularizes the transformation with the goal of favoring any specific
roperties in the solution that the user requires and seeks to tackle the
ifficulty associated with the ill-posedness of the problem. The whole
ramework is illustrated in Fig. 2. In the following, we will introduce
he matching methods using handcrafted and data-driven strategies,
nd analyze how the traditional methods develop into those trainable

nes in theory and practice.
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Fig. 1. Structure of this survey.
Fig. 2. General framework of traditional area-based image registration.
2.1.1. Handcrafted framework
From the above details, we can see that area-based image regis-

tration method consists of three components: (1) measure metric, (2)
transformation model, and (3) optimization method. Next, we will in-
troduce this general framework following these three key components.

(1) Measure metric
As a critical component in the area-based image registration

pipeline, metrics or matching criteria for measuring the accuracy of im-
age registration are a hot topic in guiding the entire optimization pro-
cedure. Different metrics can be devised depending on the assumptions
about the intensity relationship between two images [29]. Frequently
used manual metrics can be briefly classified into correlation-like and
information theory-based methods.

A direct measurement in monomodal image registration is to com-
pute the distance of corresponding pixels, such as the sum of squared or
absolute differences, i.e., SSD and SAD. This computation is performed
under the assumption that the same anatomical structures have similar
intensity values. Another idea is inspired by signal correlation, and
it assumes that a linear correlation would intrinsically exist between
two signal series, in which the most representative criteria are cross
correlation [41–43] and normalized correlation coefficient (NCC) [44,
45].
24
The most representative metric in information theory-based meth-
ods is mutual information (MI) [46,47], which is typically based on a
statistical comparison of the image domain. MI is particularly suitable
for the registration of multimodal cases due to its statistical dependency
between two images. This metric has also attracted great interest in
designing advanced information-based metrics, including a normalized
version of MI (NMI) [48], an upper bound on the maximum MI [49],
conditional MI (cMI) [50], regional MI (RMI) [51], or some divergence-
based approaches [52–54]. However, the MI experiences difficulty
in determining the global maximum of the entire searching space,
inevitably reducing its robustness [29].

Nevertheless, these metrics are not absolutely linear to the accu-
racy of image registration, which are largely affected by the size of
overlapping area and image contents. Some limitations also exist when
image pairs undergo serious image deformations or contain a smooth
area without any prominent details.

(2) Transformation model
Another key component in image matching community is the choice

of transformation model (also known as mapping function). In general,
transformation models typically explain the geometrical relations be-
tween the target image pairs, whose parameters need to be accurately
estimated to guide the image warping and resampling (together with
an appropriate interpolation method) for ultimate registration. Aside
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from area-based image matching, a good transformation model is also
required for feature-based matching pipeline, such as realizing point
set registration or robustly estimating the global transformation after
feature matching. Although transformation models were fully studied
in previous decades and formed as a series of standards, they are still
worth revisiting because choosing an appropriate transformation model
can not only maintain the matching accuracy but also achieve fast
optimization, particularly for learning-based methods. According to the
type of geometrical scene between two images, existing transformation
models can be briefly classified into linear models (e.g., rigid, affine,
and projective) and nonlinear deformations (e.g., interpolation model,
elastic model, and diffusion model).

Linear models. The rigid transformation can be seen as the simplest
static model that accounts for rotation and translation with 3 degrees
of freedom (DOF) (or 6-DOF in the 3D case). This basic model is a
common choice in the literature for matching rigid bodies, such as
bones, or using similarity transform to tolerate the scale variations.
A more general model (using 6-DOF in the 2D case), namely, affine
transformation, can preserve the parallelism of lines but not their
lengths or angles, thus additionally allowing for shearing deformations
and mapping a parallelogram onto a square. Two other parametrical
models, which are derived from multiview geometry and photography
imaging, use more parameters to capture the camera motions, namely,
fundamental matrix (epipolar geometry) and homography matrix (pro-
jective transformation). Fundamental matrix usually constrains a point
in the first image to a line in the second image, while projective
transformation can map a trapezoid onto a square. These two para-
metric models can meet the majority of requirements of natural image
matching.

Nonlinear deformations. Transformation models that can explain
the elastic bodies even local deformations are urgently needed in dy-
namic scenes. To this end, numerous nonlinear models, also known as
nonrigid or deformation models, were investigated in previous decades
and are widely used in the image matching community (image or point
set registration, feature matching). According to the basic idea, nonlin-
ear deformations can be classified into physical models and interpolation
models [29].

Physical models are commonly derived from physical phenomena
and represented by partial differential equations. An elastic body model
typically regards an image grid as an elastic membrane that is deformed
under the influence of two forces that compete until equilibrium is
reached. An external force tries to deform the image such that matching
is achieved, while an internal one enforces the elastic properties of
the material. A nonlinear form of elastic model is proposed to handle
large deformations by using hyperelastic material properties. Apart
from the elastic body, another physical model used to recover large
deformations is based on viscous fluid, in which a smoothing term is
used to constrain neighboring points to deform similarly. In addition
and based on Maxwell’s demon, nonrigid deformation can be modeled
as a diffusion procedure. This procedure typically iterates between esti-
mating demon forces for each demon and updating the transformations
guided by the calculated forces [55]. Regularization is often efficiently
achieved through Gaussian kernel convolutions. Other physical models
include curvature registration and flows of diffeomorphisms. In the
regularization scheme of curvature methods, several boundary condi-
tions are designed for efficient optimization, such as using second-order
terms [56] or the approximation form of curvature penalty [57]. In
diffeomorphism methods, the deformation is modeled by considering
its velocity over time according to the Lagrange transport equation
together with a regularization term that constrains the velocity field
to be smooth [58,59]. A diffeomorphism framework can handle large
deformation registration problems because of the gradual variation
behavior of the velocity field and is thus also named large deformation
diffeomorphic metric mapping [60,61].

In contrast to physical models, geometric transformations derived
25

from interpolation or approximation theory have received considerable
attention for nonrigid matching due to their low DOF, computational
efficiency, and general applicability. In this family of transformations,
the displacements are interpolated based on the matched control points
or landmarks, thus spreading to the rest of the image domain, typically
by using different spline functions or interpolation functions. The most
representative function is known as radial basis function (RBF) [62],
where the value at an interpolation position is estimated as its distance
from the known matched landmarks. Thin-plate splines (TPS) [63,
64] first used RBF for image registration, which is still widely used
in several applications that range from sparse to dense. Moreover,
distance functions are usually defined variably to handle different
scenarios, where the Gaussian distance function uses a kernel param-
eter to control the global samples to influence the local deformations.
Another commonly used model is free-form deformations (FFDs) [65],
which is based on gridding images into several rectangular cells that
become deformed under the influence of the control points, and the
dense deformation is usually conducted with cubic-B splines [66–69].
Other interpolation-based models include elastic body splines [70],
basis functions from signal representation [71,72], and locally affine
models [73,74]. Readers can refer to [29,75,76] for more details and
evaluations.

(3) Optimization method
Once given a measure metric and transformation model, and ob-

taining the target or energy function like Eq. (1), it also requires
an optimization method to search the optimal transformation from
the solution space to best align two images. Obviously, the choice of
optimization methods may largely impact the matching accuracy and
efficiency. In accordance with the nature of variables that optimization
methods try to infer, a brief category on them would be continuous meth-
ods and discrete methods. Continuous optimization assumes the variables
as real values that require the objective function to be differentiable.
Representative methods of this type are gradient descent methods,
conjugate gradient methods, and quasi-Newton methods. A discrete
method solves the problem by assuming its solution space as a discrete
set. Representative ones are graph-based [77], message passing [78],
and linear programming methods [79,80]. A probabilistic graphical
model (e.g., Markov random field) is often applied to formulate the
matching task and solved by these discrete optimization methods.
Several heuristic and metaheuristic methods, such as greedy [81,82]
and evolutionary algorithms [83,84], are also investigated to explore
a larger solution space, thus being able to handle a more general
problem, but they cannot guarantee their optimal solutions.

In a word, the choice of optimization method is supposed to con-
sider the nature of objective functions and the structures they can
optimize. Traditional optimization methods have been sufficiently stud-
ied; we refer the readers to [29] for more details. Over recent years,
an increasing number of studies have been using deep features cap-
tured by CNNs to guide the conduct of optimization. More inspiringly,
these optimization methods can be replaced by deep regressors to
directly estimate transformation parameters or displacement fields with
data-driven strategies.

2.1.2. Learning-based framework
Traditional area-based image matching is typically performed in

an iterative framework, which consists of proper designs of similarity
measurement, transformation model, and optimization method. This
traditional pipeline is limited by its low computational efficiency and
handcrafted measure metrics. The emergence of deep learning tech-
niques has alleviated this predicament and has been widely studied
for the image matching task, particularly in the medical community.
In general, existing literature has successfully embedded deep learning
techniques into the traditional pipeline to drive an iterative optimiza-
tion procedure or directly estimated the geometrical transformation
parameters or deformative field in an end-to-end manner.
(1) Deep iterative methods
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The most intuitional approach is to use deep learning networks
to estimate the similarity measurement for the target image pair to
drive an iterative optimization procedure. In this way, classical measure
metrics, such as the correlation-like and MI methods, can be substituted
with more superior deep metrics.

Many researchers attempt to train superior measure metrics with the
stacked autoencoder [85–87] or some simple CNNs structures [88,89].
The combination of deep similarity metrics and handcrafted ones is also
applied as an enhanced measurement for image registration [90]. These
deep similarity metrics have shown promising advantages in MMIR
particularly for some challenging cases where handcrafted metrics have
very little success. Deep metric learning is supposed to couple with
the traditional optimization method and a predefined transformation
model to achieve image registration, thus requiring a long execution
time and sufficient aligned image (or image patch) pairs for supervised
training.

Another deep iterative method is to use the reinforcement learn-
ing (RL) paradigm to iteratively estimate the transformation parame-
ters [91]. Given an environment and its current state, RL commonly
trains artificial agents to predict best actions by maximizing the cumu-
lative expected rewards, thus driving the iterative procedure instead of
relying on traditional optimization methods. In the image registration
community, the trained agent could be single [91–93] or multiple [94],
and can handle both rigid [91,92,94] and non-rigid [93] image reg-
istration problem. However, these methods still suffer from time re-
quirements due to their iterative nature, and they should conquer the
limitations of optimizing from a large solution space when addressing
high-resolution nonrigid image registration.

(2) Deep transformation estimation
Considering the slow registration in these iterative methods, partic-

ularly for the high-dimensional parametric space in deformable cases,
an increasing number of studies are focusing on directly estimating
the geometrical transformation parameters or deformative field in one
step. According to the training strategies, these deep transformation
estimation methods can be broadly classified into supervised and unsu-
pervised methods.

Supervised methods. Fully supervised methods commonly require
round-truth data to define their loss functions. The biggest challenge is
o obtain sufficient samples, with the ground-truth transformation pa-
ameters being known, for supervised training. To this end, in addition
o using existing labeled datasets of real scenarios [95,96], many data
eneration strategies are proposed to enrich the diversity of training
amples, which are typically synthesized by transforming aligned data
hrough randomly or manually selected transformations [94,97] or
earned plausible deformations [98]. This data synthesis strategy is
ore challenging for deformable registration due to added difficul-

ies in defining their ground truth. In addition, domain adaptation
odules [99] or statistical appearance models [100] are often used

o ensure that these synthesized data can better simulate the real
ransformations.

Once enough training samples with their true transformation pa-
ameters have been obtained, another critical component is to define
he loss functions. In the supervised learning procedure, the loss can be
ntuitively defined based on the bias between the predicted and ground-
ruth transformation parameters, which can be directly measured by
andcrafted matching criteria or metrics. In addition, some simple
NN structures are sufficient to output few parameters to represent
tatic transformations. In deformable cases, fully convolutional (FC)
ayers are usually needed to represent the high-dimensional parametric
pace and output deformable fields or displacement vector fields [101],
uch as FlowNet [100], DVFNet [102], and U-Net [103,104]. Fully
upervised methods highly rely on the size and diversity of training
ata, which stimulate the development of more sophisticated ground
26

ruth generation [105].
Another training strategy is the combinational use of ground-truth
data and similarity measurements as supervision. This strategy in-
volves using both the similarity between the predicted and ground-
truth transformations, and the similarity between the warped and
fixed images to train their networks [105]. To some extent, addi-
tional supervised information can achieve superior registration per-
formance. Weakly supervised strategy, which uses segmented label
similarity to construct the loss function, is also applied to learn to
estimate the transformations [103,106]. Following these ideas, apart
from the above-mentioned networks, generative adversarial networks
(GANs) [107] are also widely used in this registration pipeline [108,
109]. The generator is trained to estimate the transformations, while
the discriminator identifies if the aligned image pairs are based on
ground truth transformations or predicted transformations.

In a word, the principal goal of these supervised transformation
estimators is to use different regularization terms to force the predicted
transformations to be realistic or close to the ground truth. This type
of method has greatly accelerated the registration procedure with deep
techniques due to their one-step nature. This goal is more achievable in
a GAN framework, but this method is still limited by the requirement
of a large amount of annotated ground-truth data that typically rely on
the expertise of the practitioner [100].

Unsupervised methods. To alleviate the limitations of annotated
ground truth and inspired by the successful use of spatial transformer
network (STN) [110], numerous unsupervised methods are proposed
to predict the geometrical transformations in an end-to-end manner.
Methods of this type use only traditional similarity measurements (e.g.,
NCC, SSD, MSE, NMI), together with a regularization term that con-
strains the complexity or smoothness of the transformation model, to
construct loss functions [111–113]. Network structures, which are simi-
lar to those used in supervised methods, are applied in an unsupervised
form without using any manually annotated data. Thus, to enhance the
registration performance, many researchers attempt to latently learn
the similarity measurement in their networks, such as learning the
relationship between image similarity metric and target registration
error (TRE), applying symmetric diffeomorphic transformation-based
learning [114], and using GAN framework to implicitly learn to mea-
sure the accuracy of image alignment [112,115]. Other methods also
learn feature representations from the raw images then use them to
train a deep transformation estimator [116].

Several efforts are also made to cope with multimodal image pairs.
Typical strategies are the use of both image intensity and gradient
information to feed to CNNs [113], image binarization then calculating
the Dice score between warped moving images and fixed images [117],
and the use of cyclic constraints that are proposed for style transfer
together with crafted metrics [112].

2.2. Feature-based pipeline

Feature-based pipeline usually follows a procedure of feature de-
tection, feature description, and feature matching [1]. This pipeline is
used more widely in the image matching community because sparse
features can be regarded as a simple representation for an image, thus
being more flexible and robust to geometric deformation and noise [2].
In the following, we introduce classical handcrafted feature detectors,
descriptors, and matchers, and those that have been proposed in recent
years. The learning-based methods in each step will be emphatically
reviewed. We refer the readers to a recent survey [2] for more details.
A flowchart of this pipeline is illustrated in Fig. 3.

2.2.1. Feature detection
The detected features usually represent specific semantic structures

in an image or the real world, and can be classified into corner [118–
120], blob [121–123], line/edge [124–127], and morphological region
feature [128–130]. In contrast to line and region feature, point feature

is more acceptably used in the image matching community because of
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Fig. 3. General framework of traditional feature-based image registration.
its simplification and easily extracted and defined nature. The extracted
line or region features are usually converted into point forms if they
are used for matching [131–135]. The core idea for feature detection
is to construct a response function to distinguish point, line, and region
from one another, along with flat and nondistinctive image areas. This
idea can be subsequently classified into gradient-, intensity-, second-order
derivative-, contour curvature-, region segmentation-, and learning-based
detectors [2]. In the following, we will briefly introduce the main
procedure and typical methods for each category and mainly focus on
the latest handcrafted and learning-based methods that are designed
for MMIM.

(1) Corner feature
A corner feature is defined as the crossing point of two straight

lines typically located in the texture area or edges. Representative
responses for corner feature extraction are gradient-, intensity-, and
contour curvature-based methods [1,2,136,137].

Gradient-based feature response is implemented based on the first-
order information of an image, which is derived from the local intensity
autocorrelation in shaking windows proposed in [138]. This strategy
was improved by Harris [118] to ease the anisotropy and computa-
tional burden, thus making it invariant to orientation and illumination.
The Harris detector uses a two-order moment matrix to formulate in-
tensity changes and distinguish corner features based on the magnitude
of eigenvalues. To make Harris corners’ location more accurate and
distributed, [139] further improved it for better tracking performance.
The gradient-based strategy makes the Harris feature popularly used in
MMIM because the gradient can well describe the structure information
that is preserved in two images of different modalities [135,140–143].

The intensity-based corner detector, a.k.a. template- or intensity
comparison-based detector, aims to simplify the gradient computation
by comparing the intensity value with its surrounding pixels. This
binary comparison strategy can largely save the execution time and is
thus widely used in many storage and real-time required applications.
An early approach in [119] used the brightness dissimilarity between
the local radius region pixels and the nucleus to identify corner and
edge features. The same concept, with a comparison of the center
against the pixels along a circular pattern, was used in the famous
FAST detector [144], which was further improved to enhance the
repeatability [136] and robustness [145]. In particular, Rublee et al.
used a grayscale centroid method to assign a main direction for each
feature, making it orientation invariant, and proposed the well-known
ORB feature. A more recent method called saddle-like detector was
introduced in [146]. This local pixel comparison strategy computes
quickly and easily extracts sufficient interest points along the texture
area of the image, which is why it is also widely used in MMIM [147–
149].

The curvature-based strategy aims to extract the corner point by
searching a maximum curvature along the detected image curve-like
edges or contours. This method usually follows a pipeline of curve
(edge/contour) extraction, curve smoothing, curvature estimation, and
threshold selection [150]. A curve feature detector is first needed in
curvature-based corner detection, which can be conducted with several
off-the-shelf methods [124–126]. Subsequently, a smoothing method is
required to suppress the impact of noise. To this end, a direct approach
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by using Gaussian methods [151,152] can ease noise but may change
curve locations, whereas an indirect approach, such as region-support-
based or chord-length-based method [153,154], can better preserve the
curve locations. In the next step, the design of the curvature can be
regarded as a point feature response, which is further used to identify
distinctive interest points through a threshold strategy. The curvature
can be estimated in an algebraic or geometric form, such as cosine,
local curvature, and tangential deflection [151,152,155]. A signifi-
cance measurement can also be used to approximate the curvature
response by counting the support structure cues, such as points [156],
distance [153], and others [157,158].

(2) Blob feature
A blob feature is typically defined as a local closed region, in-

side which the pixels are considered similar and thus distinct from
surrounding neighborhoods. Two strategies are commonly applied to
extract stable blob features: second-order partial derivative (SPD)- and
segmentation-based detectors [2].

SPD-based detectors are usually based on the Laplacian scale space
and/or Hessian matrix calculation for scale and affine invariant. The
feature extracted by this idea, a.k.a. blob feature, can be denoted by
(𝑥, 𝑦, 𝜃), with (𝑥, 𝑦) being the pixel coordinate of the feature location
and 𝜃 indicating the blob shape information including scale and/or
affine. This type of features is derived from the Laplacian of Gaus-
sian (LoG) [159], which detects a local extremum point or region
with normalized Gaussian response in the multiscale space. LoG is
approximated by the difference of Gaussians (DoG) in the famous SIFT
method [121,160] to reduce computation. SIFT extracts the potential
keypoints as the local extrema in a DoG pyramid and filters them using
Hessian matrix of the local intensity values. This procedure is further
accelerated by the SURF method [122] using Haar wavelet calculations
and integral image strategy, which can significantly simplify the con-
struction of the SPD template. Many other improvements based on SIFT
or SURF, such as enhancing affine invariant [161], efficiency [162],
and repeatability [163], have been investigated.

The core idea of the segmentation-based method is to fit an optima
ellipse for each segmented morphological region for blob feature detec-
tion or to use the contours or boundaries for corner feature searching.
The segmented regions are usually irregular and based on constant
pixel intensities or zero gradient, thus being able to remain stable
against threshold changes. One of the famous region segmentation-
based detectors is the maximally stable extremal region (MSER) [128].
It extracts a blob feature based on brighter or darker extremal region
searching. Kimmel et al. [130] extended MSER to exploit shape struc-
ture cues, and many other improvements are introduced for higher dis-
crimination, such as using curvature images [164,165], color informa-
tion [166], or other segmentation basis [167]. More recently, by using
the intersection of the boundaries of three or more regions that are built
from existing superpixel segmentation methods, Mustafa et al. [168]
proposed an MSFD corner detector for better wide-baseline image
matching. We refer the readers to [129,169] for more comprehensive
introductions.

With their robustness, discrimination, and location accuracy, SIFT-
like methods are widely used in various applications. Many researchers

have successfully improved SIFT or SURF to eliminate the modality
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gap, thus achieving MMIM, including the matching of retina [170,
171], multispectral [172–174], optical-to-SAR images [175–177], and
visible-to-infrared (VIS–IR) images [178].

(3) Learnable feature
Before deep learning, many detectors use classical learning (training

a classifier) to identify more reliable and matchable features before
matching, such as FAST [179], ORB [120], and others [145,180,181].
In recent years, deep learning has shown great potential in keypoint
detection particularly from two images with a significant appearance
difference, which often occurs in cross-modal image matching. The
core idea of CNN-based detectors is to generate a response map and
then search salient point locations, which is conducted as a regression
problem that can be trained in a differentiable manner under geometri-
cal transform and image appearance invariance constraints. In general,
this type of method can be classified into supervised [123,182,183],
self-supervised [184,185], or unsupervised methods [186–190].

Supervised methods have shown the benefits of using anchors (e.g.,
obtained from the SIFT method) to guide their training, but the perfor-
mance could be largely restricted by the method of anchor construction,
because the anchor itself is intrinsically difficult to reasonably define
and may prevent the network from proposing new keypoints in case
no anchor exists in the proximity [190]. Self-supervised and unsuper-
vised methods train detectors without any human annotations, and
only the geometric constraints between two images are required for
optimization guidance; a simple human aid is sometimes asked for
pretraining [185]. In addition, many methods integrate feature detec-
tion into the entire matching pipeline by jointly training with feature
description and matching [123,188,191–193], which can enhance the
final matching performance and optimize the entire procedure in an
end-to-end manner. We refer the readers to [2,194,195] for more
details.

Several detectors, such as TILDE [182], are also trained under
drastic image appearance changes of weather and lighting conditions.
In TILDE, a general regressor was trained to predict a score map, whose
maxima after non-maximum suppression can then be regarded as po-
tential interest points. The learning strategy can also be combined with
handcrafted methods to improve performance in MMIM [196,197]. In
a word, CNNs can capture overall structure information and high-order
cues such as semantic information from raw images, thus intrinsically
bridging different modality images to extract matchable feature points.

2.2.2. Feature description
Feature description refers to mapping the local intensity around a

feature point into a stable and discriminative vector form, enabling
the fast and easy matching of the detected features. This step requires
the generated descriptor of two matched features to be as close as
possible and for two unmatched features to be far apart in the de-
scriptor space, simultaneously being robust to geometrical transform,
image appearance changes, and image quality. Descriptor design is
the most critical part in feature-based MMIM, directly determining the
final performance. Descriptors for general image matching task have
difficulty building correct point correspondences between multimodal
image pairs, thus requiring researchers to modify these methods for
specific modality variance data. According to the used image cues
(e.g., gradient, intensity) and the form of descriptor generation (e.g.,
comparison, statistic, and learning) [2], we classify existing descriptors
into float, binary, and learnable descriptors, which can be subsequently
classified into gradient statistic-, local intensity comparison-, local intensity
order statistic-, and learning-based methods.

(1) Float descriptors
Float descriptors are often generated by statistic methods based on

gradient or intensity cues. The core idea of gradient statistic-based
descriptor is to calculate the orientation of the gradient [198] to
form a float vector for feature description. The most relevant method
SIFT [121] uses this strategy for each DoG feature, which is known
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to be scale-, rotation-, and illumination-invariant. Based on a similar
concept, SURF [122] uses Haar wavelet response and integral image
to simplify the gradient computation and achieve high computation
efficiency. Many variants of SIFT or SURF tend to obtain better per-
formance in computation efficiency, robustness, and discrimination,
such as using color or affine information [161,199] or a square root
kernel measurement [200] and gradient statistic in different domain
sizes [201], just to name a few.

Another statistic strategy is based on the orders of pixel values
rather than raw intensities, which has been demonstrated to be su-
perior in monomodal visible image matching [202,203]. Pooling by
intensity orders encodes ordinal information into the descriptor. This
scheme may enable the descriptors to be rotation-invariant without
the estimation of a reference orientation as SIFT, which appears as a
major error source for most existing methods. Representative methods
of this type include generating a descriptor by normalizing the captured
texture information and structure information with an ordinal and
spatial intensity histogram [202] or pooling local features based on
their gradient and intensity orders in multiple support regions [204].

SIFT-like descriptors are widely modified for MMIM due to their
distinctiveness and robustness. For example, symmetric-SIFT has been
adapted to be used for multimodal registration [205], which is fur-
ther improved in [206]. Other applications and modifications include
performing visible and IR image registration based on morphological
gradient and C-SIFT [178], improving the SIFT algorithm in its feature
selection strategy [173], or adapting it to suit the characteristics of
remote sensing images [175,207].

(2) Binary descriptors
Binary descriptors are typically based on the comparison strategy

of local intensities. The core challenge in this method is the selection
rule for comparison. A more representative method is the BRIEF de-
scriptor [208], which is built by concatenation of the results that are
created by a binary test of intensities for several random point pairs in
an image patch. On the basis of this concept, the well-known ORB [120]
feature is proposed by integrating a rotation-invariant strategy and
using machine learning for selected robust binary tests, thus alleviating
the limitations in rotation and scale change. Other binary selection
and comparison rules include concentric circle sampling strategy with
increasing radius [209] and comparing image intensities over a retinal
sampling pattern [210].

A descriptor of this type can perform the feature description with
low computation and memory requirements due to its simple com-
parison strategy. However, this approach may simultaneously sacrifice
great discrimination and robustness, which would be worse in multi-
modal cases where the image pairs have remarkable nonlinear intensity
variance. Therefore, binary descriptor is not a priori choice for MMIM.

(3) Learnable descriptors
The data-driven strategy in learning-based descriptors can largely

enhance discrimination because high-order image cues or semantic in-
formation between two images can be extracted in CNNs, thus showing
great potential to describe images of different modality. An early classi-
cal learning strategy has been adapted in many handcrafted descriptors
with the aim to reduce the dimensions of descriptors [211–213], con-
vert float descriptors into binary ones [214–216], and directly learn
binary representations from raw patches [217,218].

CNN-based feature description has stimulated the emergence of
an increasing number of deep descriptors in terms of training strat-
egy, model structure, and loss design. The primary goal is to learn
a representation that can enable the two matched features to be as
close as possible while the unmatched ones are far apart in the mea-
suring space [219]. In general and in accordance with the output
of deep models, existing deep descriptors can be briefly classified
into metric learning [220–223] and descriptor learning [5,224–229].
The former often learns a discriminative metric to predict whether a
pair of raw patches or generated descriptors is matched or not. By
contrast, descriptor learning tends to generate the descriptor repre-

sentation from raw images or patches. This strategy is more flexible
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and economical because it avoids repeated computation, unlike metric
learning. Another meaningful task that integrates the feature descrip-
tion with the detectors into the complete matching pipeline has also
been widely studied in recent years [123,185,188,191,192]. The opti-
mization of coupled feature detection, description, and matching can
create superior matching performance.

As for multimodal images, deep descriptor can be applied to pre-
dict matched labels for later registration tasks [230] or combined
with handcrafted features for better registration [196,197]. Except for
feature matching of the same target or scene, semantic matching [231–
235] for images of similar targets/scenes (such as matching between
dog and cat) has also been investigated. Data-driven strategy is a suit-
able choice in semantic matching and can achieve promising accuracy
by using CNNs to understand the semantic similarity. In this regard,
learning-based method has shown considerable potential in addressing
MMIM tasks.

2.2.3. Feature matching
Suppose we have obtained a set of 𝑀 interest points  = {𝐱𝑖}𝑀𝑖=1

rom the moving image and 𝑁 interest points  = {𝐲𝑗}𝑁𝑗=1 from the

ixed image. Feature matching aims to establish correct feature corre-
pondences from two extracted feature sets; this step can be conducted
n an indirect or direct manner, which corresponds to the use or non-use
f local image descriptors. The modality difference has been suppressed
n feature detection and description parts, which is why the matching
tep can be performed well by general methods.

A direct method is to correspond these two sets by directly using
he spatial geometrical relations and an optimization method. Two
epresentative strategies are widely studied: graph matching and point
et registration. The indirect pipeline commonly casts feature matching
s a two-stage problem. In the first stage, a putative match set, i.e.,
= {𝐱𝑖, 𝐲𝑖}𝐿𝑖=1, is constructed based on the similarity of local feature

escriptors, where 𝐿 ≤ min{𝑀,𝑁} denotes the number of estab-
ished putative matches, and it depends on which matching criteria
re used [120,188,236]. In the second stage, the false matches in 
re rejected by imposing additional local and/or global geometrical
onstraints. Generally speaking, the indirect pipeline can be further
lassified into resampling-based, nonparametric model-based, and relaxed
ethods. The learning-based methods in each category will be reviewed

n the corresponding part.
(1) Graph matching
Graph matching (GM) aims to construct a graph for each point

et by defining the nodes and edges in it, then establish the point
orrespondences by maximizing the overall affinity score with a graph
tructure similarity priori. It usually formulates point set matching
s a quadratic assignment problem (QAP) [237]. GM can be briefly
lassified into exact matching and inexact matching. The former refers
o finding the bijection of two binary (sub)graphs with the requirement
hat all edges are strictly preserved [238–240]. This strict condition
ay result in poor performance in real-world applications.

By contrast, inexact matching has good flexibility and efficacy in
ractice, thus attracting more research interest. Most methods in this
ategory tend to relax the constraints into an affordable form, thus
iving rise to various GM solvers. In detail, spectral relaxation meth-
ds commonly convert this task as an eigenvector solving problem,
hich can be solved by a discretization strategy [241,242], replicator
quation from evolutionary game theory [243], nonnegative matrix fac-
orization approach [244], a probabilistic interpretation strategy [245],
r by relaxing the assignment matrix to be orthogonal [246,247]. As
result of the relaxation, these methods are more efficient but less

ccurate. Convex relaxations are used to relax the original nonconvex
AP problem into a convex form with theoretical guarantees, which
re generally solved by semi-definite programming [248–250] or lin-
ar programming [251,252]. In recent years, the dual problems of
inear programming relaxation have been widely investigated to solve
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he GM problem [253–257]. Convex-to-concave relaxations [258,259]
aim to gradually achieve convex-to-concave procedure of the original
problem by using path-following approaches. Continuous relaxation
methods [260–263] can approximate the QAP issue and solve it in an
accurate or efficient manner, but without global optimality guarantee.
Many others, such as random walk method [264] and Monte Carlo
method [265,266], are also investigated for the GM problem. In addi-
tion, multigraph [267–271] and hyper-graph matching [272–274] are
studied actively, which refers to jointly matching multiple graphs with
consistent correspondences and formulating GM in a high-order form
to mostly explore the geometrical cues, respectively.

In recent years, deep learning technique has been widely used to
address the GM problem. Affinity matrix plays a key role in the GM
problem, which is why most deep learning techniques tend to obtain a
better representation for it in a supervised [275] or unsupervised [276]
form. Many researchers even cope with the GM problem in an end-
to-end manner [277,278] by simultaneously learning the node/edge
affinities and solving this combinatorial optimization problem.

(2) Point set registration
Different from GM methods, point set registration (PSR) assumes

that a global transformation model between point sets exists and is
known beforehand, then iteratively estimates the model parameters and
point-to-point correspondences. To this end, an increasing number and
variety of techniques are being proposed to improve the robustness
and solving efficiency. One of the most representative schemes is
iterative closest point (ICP) [279] and its variants [280–283]. This
method is improved by soft assignment and deterministic annealing
strategy under a robust point matching (RPM) framework [284,285].
Another representative pipeline that combines RPM with Gaussian
mixture models (GMMs) is also widely studied [286–289], and it is
commonly optimized by expectation–maximization (EM) solvers. Many
other density-based and optimization-based methods are introduced
for robustness and efficiency enhancement, such as kernel density
method [290], support vector parameterized strategy [291], or fuzzy
clustering method [292], while optimization-based methods include
stochastic optimization approaches [293,294], branch and bound [295–
299], and semi-definite programming method [300].

Apart from methods that focus on exploring the model formula-
tion and optimization methods, some PSR methods aim to construct
shape descriptors from the point set, then establish sparse point cor-
respondences by using the similarity constraint of descriptors, fol-
lowed by a robust estimator for global transformation parameters
estimation [301–303]. Typical points descriptors include shape context
(SC) [131], spin images [304], integral volume [305], and point feature
histograms [306].

(3) Indirect methods
The most classic methods for mismatch removal and parameter

estimation are resampling-based methods, which are also known as
random sample consensus (RANSAC) [301] and its variants [307–311].
The common idea of these approaches is to obtain the smallest consis-
tent inlier set to fit a given transform model following a hypothesize-
and-verify strategy. Many improvements based on RANSAC mainly
focus on verifying the model quality, such as using a maximum like-
lihood procedure in MLESAC [307,308] or modifying the sampling
strategy as inspired from the specific properties of inliers, such as
spatially consistency-based [312], by using a grouping strategy [309]
or inlier probability prediction [313]. Several studies address this
issue in a local optimization procedure [314,315], or a progressive
growing sampling procedure [311,316,317] to eliminate the need for
user-defined thresholds such as inlier–outlier decision. A universal
framework that integrates many improving strategies of RANSAC is
introduced in [310]. Notably, resampling-based methods may largely
rely on the resampling strategy and suffer considerably and even fail if
the image pairs undergo serious nonrigid deformations. Moreover, the
theoretical execution time exponentially grows with the increase in the

outlier ratio.
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Nonparametric model-based methods are developed to handle both
rigid and nonrigid transformations, thus showing more flexibility. Such
methods are representative by defining deformation functions in a high-
dimensional form, such as triangulated 2D mesh [318] or a kernel rep-
resentation in reproducing kernel Hilbert space with Tikhonov regular-
ization [319–321]. These methods are typically optimized through tai-
lored robust optimizers, such as Huber estimator [322], L2E [320], sup-
port vector regression [323], or EM solution in a Bayesian model [319,
321,324–327].

Another active topic is the investigation of relaxed methods for
mismatch removal. These relaxation rules are typically based on the as-
sumption of locality or piecewise consistency [328], such as grid-based
motion statistics (GMS) [329], locality preserving matching (LPM)
[330] and its varieties [331,332], feature matching using spatial clus-
tering with heavy outliers [333], and coherence-based decision bound-
aries [334]. Other strategies include using a filtering theory [335,336]
or Markov random field formulation [337]. These methods are efficient
and can handle both rigid and nonrigid image matching. Thus, they
are more acceptable for real-time required applications because they
achieve solutions quickly by using less-strict geometric constraints.
However, these relaxed methods are commonly sensitive to parameter
setting and greatly rely on a dense match set, which should well
maintain the local coherency of correct matches.

In recent years, a learning technique has been widely studied and
equipped to eliminate the outliers and/or estimate model parame-
ters through training a deep regressor [338–340] or classifier [341–
343]. In general, parameter regression and inlier/outlier classification
are trained jointly for performance enhancement [341]. Deep regres-
sor is inspired by the classical RANSAC and aims to estimate the
transformation model, such as fundamental matrix [344] or epipo-
lar geometry [339]. For example, a differentiable RANSAC, namely,
DSAC [338], is trained in an end-to-end manner by using reinforcement
learning, while other efforts are made to improve the sampling strat-
egy [339,340]. As for classifier learning, Yi et al. [341] first introduced
a pipeline called LFGC to find good feature correspondences by training
a network from a set of putative match sets together with their image
intrinsics. Ma et al. [342] proposed LMR, a general two-class classifier
learning framework for mismatch removal, by using a few training
image pairs and handcrafted geometrical representations for training
and testing. Zhang et al. [345] focused more on geometrical recovery
in their order-aware networks. Apart from learning with multilayer
perceptron (MLP), another method conducted this task with graph
convolutional networks (GCN) [346].

Learning from point data is not as easy as that on raw images by
using deep convolutional networks due to the unordered structure and
dispersed nature of the sparse points. Even so, this approach is still
worthy of attention because many recent studies have shown great
potential in using the GCN and MLP network structure together with
tailored normalization terms to learn to address sparse point-based
tasks [2,333].

2.3. Summary

Existing matching methods for multimodal images could be sys-
tematically classified into area-based and feature-based pipelines. The
area-based method would be largely affected by the choice of measure
metric. Two possible strategies are commonly applied for MMIM: one
is the use of a modality-independent measure metric such as MI and
its varieties, and the other is the reduction of different modalities into
a common domain. However, area-based methods are limited by their
large computational burden and their requirement for image pairs to
have large overlaps and undergo slight geometrical deformations. Deep
metric learning or deep transformation estimation in this framework
dramatically alleviates the predicament in matching criteria design and
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iterative optimization. However, this learning strategy is still restricted
by the high image resolution and large or complex deformations, partic-
ularly with the requirement of sufficient training data. A feature-based
pipeline can efficiently address the problem in geometrical deforma-
tion. Direct feature matching, such as graph matching and point set
registration, is more suitable for image pairs containing less texture
(even binary images), or heavy modality or semantic variances. In these
cases, the image patch-based descriptor would be invalid. However,
the graph structure among potential true point correspondences may
be steadily preserved, which requires an overall corresponding matrix
to be optimized to find an optimal solution. But these direct feature-
based matching methods are limited by high computational burden
and outlier sensitivity. As for indirect feature matching, extracting a
high number and ratio of interest points then constructing distinctive
descriptions and corresponding them accurately are difficult because
of the significant nonlinear intensity variance between two modalities.
Proposing an advanced paradigm with better registration performance
in terms of both accuracy and efficiency remains an open problem for
researchers.

3. Modality-independent review

As aforementioned, matching for multimodal images can be seen as
one specific case. Apart from these challenges presented in the general
image matching task [2], the primary one in the multimodal case also
includes eliminating the domain or modality gap between two input
images. However, the natures of images would vary considerably across
different imaging sensors or data types in different research areas.
Thus, in the following, we will review these typical and latest image
matching methods that are designed for specific multimodal scenarios
under different research areas, including medical, remote sensing, and
computer vision. Simultaneously, the image natures of each modality
will be analyzed first in the corresponding parts to reinforce the under-
standing of the challenges and need for image registration of different
modalities.

3.1. Medical

The biggest family of MMIR may lie in the medical community.
With the rapid development of visualization of computer imaging tech-
niques, medical imaging has developed from statistic to dynamic, plane
to solid, and morphological to functional imaging, which has played
a significant role in modern medical diagnosis. Commonly used med-
ical imaging techniques include X-ray, ultrasonic imaging (UI or US),
computer tomography (CT), single-photon emission computed tomog-
raphy (SPECT), magnetic resonance imaging (MRI), positron emission
tomography (PET), and functional magnetic resonance imaging (fMRI),
generating medical images of different modalities. From the perspective
of medical applications, these modalities can be briefly classified into
anatomical images such as CT and MRI, and functional images such
as PET, fMRI, and SPECT [347]. Anatomical images have high spatial
resolution that can clearly display geometrical information, such as the
anatomical structures of viscera and bones, but without any functional
information. In contrast, functional images can well display the func-
tional transformation during the metabolic procedure, but the images
are usually not clear enough to reveal the structure information, re-
sulting in difficulties in anatomical structure and boundary localization.
Consequently, the complementary information from the images of these
two types needs to be combined, which first requires the image pairs
to be spatially aligned. The registration target also includes the MRI
with different weights, such as T1, T2, and proton density (PD), or
the retinal images of different angiographies such as digital subtraction
angiography (DSA), fundus photography and fluoroscopy angiography
(FA).

In the field of medical research, MMIM is a hot topic and has
been giving rise to an increasing number and diversity of registration
techniques. Several main strategies have been proposed to solve this
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problem, including (1) information theoretic similarity measurement;
(2) reduction of the multimodal problem into a monomodal problem
(modality unification); (3) interest point extraction and matching-based
pipeline. All these strategies can be implemented by using deep convo-
lutional networks, which will be the main focus in a new subsection.

3.1.1. Information theory-based
In past decades, information theoretic similarity measurements suc-

cessfully alleviated the gap between multimodal image pairs in the
registration task, which have been widely investigated and extended
into more advanced forms. This step benefits from the successful use
of MI, introduced and popularized by Viola and Wells [46,47], and
Collignon and Maes [348,349]. In recent years, Maes et al. [347] rec-
ognized that the MI measure gave rise to revolutionary breakthroughs
in the MMIR task. However, the widespread use and study of MI have
revealed some of its shortcomings. Primarily, it is not overlap-invariant.
Thus, MI may be maximized in certain cases when the images become
misaligned.

Following the pipeline of maximizing the MI score for MMIR,
numerous advanced information theoretic approaches have been in-
vestigated to remedy the abovementioned shortcoming. For example,
Studholme et al. [48] proposed a normalized version of MI, namely,
NMI, to better register slices through clinical MR and CT image volumes
of the brain. An upper bound on the maximum MI [49] is studied for
deformable image registration, which can provide further insight into
the use of MI as a similarity metric. In addition, cMI [50] is proposed
as an improved similarity metric for nonrigid registration. cMI is
conducted as a 3D joint histogram based on both intensity and spatial
dimensions, and incorporated in a tensor-product B-spline nonrigid
registration method by using either a Parzen window or generalized
partial volume kernel for histogram construction. In [350], the authors
proposed a hybrid strategy that combines the spatial information with
MI to achieve multimodal retinal image registration.

Many researchers utilized the divergence measures to compare the
joint intensity distributions in MMIR, including Kullback–Leibler diver-
gence (KLD) [52,53] and Jensen–Shannon divergence (JSD) [54]. The
use of Renyi entropy [351,352] has also attracted great attention in the
registration problem, which is conducted with minimum spanning tree
or spanning graphs [353], or by integrating with KLD [354] for better
generalization.

Considering that these statistic measurements are commonly based
on a single pixel joint distribution model, the statistic criteria are also
implemented in a global or local region. For example, building from a
linear weighted sum of local evaluation of MI, Studholme et al. [51]
proposed RMI to reduce the errors caused by local intensity changes.
Others used octrees [355] or locally distributed functions [356].

Many researchers have been paying increasing attention to opti-
mization methods to quickly and accurately estimate transformation
models. Wachowiak et al. [83] considered that local optimization
techniques frequently fail, because these metric functions with respect
to transformation parameters are generally nonconvex and irregular
during an area-based procedure. Hence, they modified an evolutionary
approach that involves particle swarm optimization for biomedical
MMIR. Arce et al. [357] used the MRF coefficient under a Bayesian
formulation to model local intensity polynomial transformations, while
local geometric transformations are modeled as prior information with
MRF to register both rigid and nonrigid brain images of MRI T1 and T2
modalities. Moreover, Freiman et al. [358] presented a new nonuni-
form sampling method for the accurate estimation of MI in multi-
modal brain image rigid registration. This method uses 3D fast discrete
curvelet transformation to reduce the sampled voxels’ interdependency
by sampling voxels that are less dependent on their neighborhood,
thus providing a more accurate estimation of the MI. Following the
NMI and FFD registration pipeline, Yang et al. [359] introduced a
cooperative coevolving-based optimization method that combines the
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limited-memory Broyden–Fletcher–Goldfarb–Shanno with boundaries
(L-BFGS-B) and cat swarm optimization for nonrigid MMIR. In this
method, the block grouping strategy can capture the interdependency
of all variables, thus achieving fast convergence and better registration
accuracy of 3D CT, PET, and T1-, T2-, PD-weighted MR images.

In recent years and with spatial information taken into account,
Legg et al. [360] proposed feature neighborhood MI in their two-stage
nonrigid registration framework to align paired retinal fundus pho-
tographs and confocal scanning laser ophthalmoscope (CSLO) images.
This improved MI is superior to many existing MI variants, such as
original MI, gradient MI, gradient-image MI, second-order MI, regional
MI, feature MI, and neighborhood incorporated MI.

The methods explored in the early part of this decade were com-
prehensively reviewed in [29]; readers may refer to this work for more
details. The measure metrics that use deep learning are reviewed in the
part of learning-based methods.

3.1.2. Modality unification-based
Another strategy aims to transform two different modalities into a

common domain, making it workable for general measuring metrics
that are successfully used in monomodal image matching. Two possible
ways are used to reduce this problem into a monomodal one: simulating
one modality from another and mapping both modalities into a third
one. In this part, we review typical and related handcrafted approaches
that follow this idea. Approaches that use deep networks will be intro-
duced in the learning-based methods, such as style transfer learning and
descriptor learning. Refer to the corresponding part for more details.

Following this strategy, several studies aim to map one modality to
another according to the physical properties of the imaging device. To
register US and MR images, Roche et al. [361] transformed MR images
into the domain of US images on the basis of their intensities and
gradient information. The registration is performed with a rigid model
and based on the expended correlation ratio method. Another method
in [362], aims to generate pseudo-US images from CT by exploiting
the physical principles of US images, thus achieving CT-US rigid/affine
registration optimized under a locally evaluated statistical criterion. In
addition to mapping one modality to another in a global manner, the
local patch-based strategy is also studied to identify the unreliable areas
if directly using the MI metric, then the small patches of these areas are
simulated to a common domain [363]. The mapping strategy is also
conducted with a learning strategy, which will be reviewed in the part
of learning-based methods.

Another way to map two different image modalities into a common
one is to exploit the morphological information, such as edge or contour
structures, which commonly exist in both modalities. Many approaches
directly extract these morphological or structure information through
filtering [364,365] or by using existing edge extractors. Gabor filtering
can easily capture texture information from raw images, which is why
it is widely used for modality unification [364,366], as also conducted
by several local frequency representations [365].

Local descriptors can also map the target pixel or voxel into a
distinctive vector form in a high-dimensional space, making similar-
ity measurement more convenient and thus making the optimization
process more effective. Inspired by this idea, many methods aim to
reduce the multimodality to uniform domain on the basis of the con-
cept of self-similarity image representation, which was first studied
in local self-similarities (LSS) by Shechtman et al. [367]. LSS is a
local feature descriptor that can capture the internal geometric lay-
outs of LSS within images and indirectly represents the local image
property, which is why it can be used to match two textured regions
with significant appearance variance but similar layouts or geometric
shapes. In addition, a descriptor called modality independent neigh-
borhood descriptor (MIND) [368] is proposed to extract the distinct
structure in a local neighborhood to generate description vectors, thus
transforming the images of different modalities into a third domain,
whose similarity is easily measured by arbitrary metrics such as SSD.

The authors apply this descriptor within a symmetric nonparametric
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Gauss–Newton registration framework, and well registered 3D CT and
MRI chest scans under rigid and deformable transformations. The use
of MIND makes this descriptor robust to image noise and nonlinear
variance of image intensity. Therefore, the proposed technology would
be applicable in the registration task of arbitrary modalities. The same
authors introduced a new structural image representation called self-
similarity context (SSC) [369] for efficient computation. SSC is also
based on the concept of self-similarities descriptor to represent image
patches in a common space, thus making the similarity metric easier
to apply. This idea is conducted on the registration of 3D US and MRI
brain scans by using a symmetric multiscale discrete optimization and
diffusion regularization to search accurate deformation parameters.

The authors in [370] proposed entropy and Laplacian image-based
structural representation together with the SSD metric, namely, eSSD,
to measure patch similarity, then used it to drive the registration
procedure of T2–T1–PD MRIs and PET–CT images under rigid or non-
rigid transformations. This method creates an intermediate structure
representation in a manifold space by means of a manifold learn-
ing scheme with a local distance-preserving constraint. The authors
of [371] addressed the weakness of eSSD in terms of noise sensitivity
and high computational burden, and they introduced a new similarity
metric based on Weber local descriptor (WLD). Diffusion maps are used
in [372] to capture the geometric and spectral properties across two
images of different modalities, thereby better representing complicated
image features, which can improve the registration performance. The
self-similarity 𝛼-MI (SeSaMI) proposed by Rivaz et al. [373] uses local
structural information in a graph-based implementation of MI for non-
rigid image registration. Rivaz et al. [374] also proposed contextual
conditioned MI on the basis of conditioning the estimation of MI
on similar structures. This method considers both intensity values of
corresponding pixels and contextual information in its neighboring
pixels.

Analogous to MIND, another self-similarity-based local descriptor
called Zernike moments-based local descriptor (ZMLD) [375] was pro-
posed to enhance the robustness and discrimination of similarity met-
rics. The introduced self-similarity is based on the Zernike moments
of image patches and also in a local neighborhood to generate de-
scriptors, whose distance in Euclidean space is directly calculated as a
measurement criterion. Extensive experiments on T1–T2–PD weighted
MR brain images and real MR–CT images, together with spline-based
FFD transformations and L-BFGS optimization method, demonstrated
the superiority of the proposed method to NMI, ESSD, WLD, and MIND.
This idea can be implemented with a binary descriptor, such as discrim-
inative local derivative pattern (dLDP), to encode images of different
modalities into similar image representations [376]. dLDP calculates
a binary string for each voxel according to the pattern of intensity
derivatives in its neighborhood. This descriptor similarity is evaluated
using the Hamming distance, which can be efficiently computed.

3.1.3. Feature point-based
Given the reduced texture of medical images, feature-based methods

are rarely used in the matching task in this field. However, the global
structure and counters or edges commonly exist in both images of
different modalities, thus providing matchable information. The target
image pairs sometimes cover small overlapping areas or large defor-
mation, which is significantly difficult to optimize in an area-based
pipeline with a similarity measurement, thus inspiring researchers to
design workable feature detection, description, and matching methods
to handle these issues. Kelman et al. [377] evaluated general MMIM
toward representative feature-based methods.

This idea is popularly applied to register the retina image pairs of
different modalities. For instance, Chen et al. [140] proposed partial
intensity invariant feature descriptor (PIIFD) for poor-quality image
pairs, and it is performed with Harris features, thus also being called
Harris-PIIFD. On the basis of the successful use of the PIIFD descriptor
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in multimodal retinal image matching, Ghassabi et al. [170] combined
the use of UR-SIFT features and PIIFD descriptors, and achieved promis-
ing performance. Considering that Harris-PIIFD may fail to correctly
align color retinal images with other modalities when faced with large
content changes, Wang et al. [378] proposed a robust point match-
ing framework called SURF-PIIFD-RPM for multimodal retinal image
registration. In this method, the SURF detector is first exploited to
extract matchable point features from two images, then the authors
matched them by using the PIIFD descriptor. Subsequently, a single
Gaussian robust point matching model, which is based on a kernel
method conducted in reproducing kernel Hilbert space, is used to
estimate the mapping function in the putative match sets with existing
outliers for better matching performance. Following a similar strategy,
the combined use of SIFT and PIIFD with an outlier rejection strategy
is introduced in [171]. In addition, a residual-scaled-weighted least
trimmed squares method is designed to enforce an affine transformation
model, which significantly outperforms the Harris-PIIFD scheme. In
addition to the aforementioned strategies, a symmetric-SIFT has been
adapted to rapidly register CT and MR brain images through rigid
transformation estimation [205], which is further improved by [206].

Recently, Li et al. [379] proposed a two-step registration procedure
of color fundus (CF) and scanning laser ophthalmoscope (SLO) retina
images. In the first step, the mean phase images are generated for
feature descriptor matching together with the RANSAC method to
estimate the global affine transformation, then MIND is exploited to
refine the local accuracy, thus achieving deformable registration.

3.1.4. Learning-based
MMIR with deep networks for medical applications is an active

research area and has given rise to an increasing amount and di-
versity of publications. Similar to traditional methods, the learning
strategy is typically exploited to tackle the modality gap, thus easing
the registration procedure. As mentioned in the general framework,
i.e., Section 2, this concept is usually performed as similarity metric
learning, modality transfer learning to reduce multimodal problem as
a monomodal one, and end-to-end learning to directly estimate the
transformation parameters or displacement field in one step.

(1) Metric learning
Metric learning can be seen as a direct extension of handcrafted sim-

ilarity metrics, such as SSD- or MI-like methods, and those learned met-
rics can better guide the iterative MMIR procedure. An early learning-
based method in [380] proposed a learned similarity measure in a
discriminative manner by means of joint kernel machine learning,
such that the reference and correctly deformed images receive high
similarity scores. To this end, the authors developed a method derived
from max-margin structured output learning and employed the learned
similarity measure within a standard rigid registration algorithm. A
stacked denoising autoencoder (SAE) was introduced in [87] to learn a
similarity measurement for rigid CT and MR image registration. In [89]
and learning from aligned 3D T1–T2 weighted brain MR volumes, a
deep similarity metric can be obtained and integrated with the gradient
descent method to iteratively estimate the parameters of a predefined
deformation field. To estimate the parameters of rigid model in 3D
US–MR abdominal scan registration, Sedghi et al. [381] used a simple
five-layer neural network to learn a similarity metric that can measure
the level of registration. This learned metric is then optimized by
means of Powell’s method in an iterative manner. In [88], the authors
proposed a novel strategy to train the networks to obtain a similarity
metric by predicting registration performance evaluation such as TRE.
In this strategy, the evolutionary algorithm is exploited to explore
the solution space, achieving rigid registration for transrectal ultra-
sound (TRUS) and MR images. Unlike in the above-mentioned methods,
Wright et al. [382] trained LSTM spatial co-transformer networks to
guide the iteration procedure and then achieve the registration of
3D fetal MR–US brain scans. This deep method is superior to other
similarity metrics and self-similarity-based descriptors.
(2) Reinforcement learning
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RL is first explored in the medical image registration problem. The
first team that used RL for MMIR was Liao et al. [91]. They tried to
achieve the rigid registration of cardiac and spine 3D CT and cone-
beam CT (CBCT) images by means of Q-learning with a single agent,
in which a greedy supervised approach together with an attention
strategy is exploited for end-to-end training. Ma et al. [92] performed
RL for rigidly registering depth and CT image pairs, in which the
Q-learning strategy is borrowed to extract feature representation to
eliminate the appearance variance of two images, and the contexture
information is captured to guide the registration for performance en-
hancement. To register X-ray and digitally reconstructed radiographs of
the spine, Miao et al. [94] designed a dilated FCN in a Markov decision
process and multiagent system in their RL paradigm. They used an
auto-attention mechanism to capture deep information among multiple
regions. The proposed method can largely improve the efficiency and
accuracy of the registration.

(3) Supervised learning for transformation model estimation
To avoid the large computational burden in the iterative pipeline

such as metric learning or RL-based methods, a growing number of
studies estimate the geometrical transformation parameters in an end-
to-end fashion. The rigid model is easier to estimate with a deep frame-
work, as first conducted by Salehi et al. [97] and Sloan et al. [383],
who used a deep regression network to generate the rigid parameters
to align T1–T2 weighted brain MR. The authors in [97] constructed
their loss function based on bivariant geodesic distance and initially
registered the MR volume groups through a residual network before
their correction network. This strategy can enlarge the capture capacity
of their network. The authors validated the customized loss and their
network on both multimodal 2D–3D and 3D–3D registration problems.
The authors of [383] used their deep networks for both uni- and multi-
modal registration. The parameters of those layers for extracting deep
features are shared in the monomodal case but are learned separately
in MMIR.

A more challenging problem is to learn to estimate the deformable
model parameters or deformation fields in one step in nonrigid cases.
Yang et al. [101] solved this problem of 3D T1–T2 weighted brain MR
volumes by using a low-rank Hessian approximation of the distribution
of the nonrigid model parameters. In [384,385], Hu et al. trained
their cooperative networks – namely, global net and local net – to
estimate global and local refined deformation fields, respectively, and
they applied this pipeline to register deformable MR-TRUS prostate
images [384]. The whole framework is trained based on the similarity
of segmented labels and is further modified as an end-to-end learn-
ing form by means of FCN networks with dense displacement field
(DDF) as deformation modeling [385]. In [106], Hu et al. aimed to
perform deformable MR and TRUS registration by using GAN model by
maximizing segmented label similarity and minimizing the adversarial
loss. Analogous with the use of label similarity to guide the network
training, Hering et al. [103] exploited a U-Net-based architecture and
constructed the loss function on the basis of the label and similarity
metrics for deformable registration of 2D cine-MR images, which is
further applied for cardiac motion tracing.

(4) Unsupervised learning for transformation model estimation
In addition to the use of annotated labels for supervised train-

ing, an increasing number of unsupervised methods have also been
investigated. To perform 3D MR–US brain volume registration, an
unsupervised framework [113] that uses a 3D CNN for feature ex-
traction and deformation model regression is applied. In this method,
the similarity metric based on pixel intensity and gradient information
is used to achieve unsupervised training. A similar method in [111]
trains the deep network guided by traditional similarity metrics such as
NCC and based on prealigned image pairs to register deformable pelvic
CT and MR volumes. In [386], the authors used the encoder–decoder
paradigm to generate modality-independent latent representation to
perform in a cycle-consistent way, and they used inverse-consistent loss
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to guide the STN to learn affine and nonrigid transformations under
a simple similarity constraint such as MSE. The proposed method can
achieve promising performance on 2D or 3D T1 and FLAIR MR brain
data.

(5) GAN for transformation model estimation
A GAN model has also been studied for MMIR of medical slices or

volumes. Yan et al. [108] proposed a GAN paradigm to rigidly register
3D MR and TRUS prostate biopsy volumes. The core idea is to force
the trained discriminator to identify if the alignment of volume groups
is performed by ground-truth transformations or those generated by
a generator, and simultaneously requiring a more advanced generator
whose output is more like the ground truth, thus being able to cheat
the discriminator. Subsequently, Mahapatra et al. [112] constructed
the loss terms by combining several similarity metrics, including NMI,
SSIM, and SSD, with advanced adversarial and cyclic constraint loss
in their GAN framework to cope with MMIR of retinal CF images and
fluorescein angiography (FA) images.

More recently and based on the STN and GAN framework, a U-Net is
trained in [104] to generate an adversarial loss, thus guiding the train-
ing procedure. To avoid the requirement of ground-truth deformation
fields, annotated landmarks, or any aligned multimodal image pairs for
training, Qin et al. [109] tried to learn a parameterized registration
function for modality unification in a latent embedding space in an
unsupervised manner. Any meaningful geometrical deformation can be
directly derived in the latent space. Three components are designed in
the proposed framework: an image disentangling network via unpaired
image-to-image translation, a deformable registration network in the
disentangled latent space, and a GAN model to implicitly learn a
similarity metric in image space. The whole procedure is performed
by combining self-reconstruction loss, latent reconstruction loss, cross-
cycle consistency, and adversarial loss with similarity metrics defined
on latent space. The GAN framework can also translate one image
domain to another, thus reducing the image modalities into a common
one [387–390]. In this way, an arbitrary similarity metric that is used
for traditional area-based registration can be exploited to construct loss
terms to guide the network training.

(6) Hybrid methods
A supervised learning approach was introduced in [391] to learn

optimization updates for MMIR. This method poses the problem as
a regression task to estimate the unknown transformation based on
the local structure and global appearance information by means of
Haar-like features, and its transformation parameters are modeled by
regression forests in a large feature space. A pretrained network is
used in [117] as a feature extractor, in which the interest points can
be extracted and then fed to an MLP regression model to predict
the geometrical transformation, and the point number is fixed and
turned into a hyperparameter. This technique can perform zero-shot
learning without requiring aligned image pairs or ground-truth trans-
formations for training, thus achieving real-time registration of brain
T1–T2 weighted MRs. In addition, a manifold learning approach based
on the Laplacian eigenmap [392] is introduced to embed multimodal
images as a monomodal problem by means of structural representation.

3.2. Remote sensing

Another group of MMIM is investigated for remote sensing ap-
plication. The significant development of high-resolution sensors has
resulted in an increasing number of remote sensing satellites for obtain-
ing image data, such as Ikonos, Quickbird, TerraSAR-X, Cosmo-Skymed,
and WorldView [393]. Remote sensing images are often classified into
two categories according to the style of the imaging system, i.e., passive
manner and active manner.

Passive optical images refer to remote sensing images that are
captured in the visible- and near-IR (NIR) spectral bands by using a
passive sensing system, and are obtained from the reflection of electro-
magnetic waves to the corresponding sensor and accurately represents

the color and brightness information of the target. These images can
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be further classified into panchromatic and multispectral images. In
an active imaging system, light detection and ranging (LiDAR) tends
to construct an image in an active manner, in which electromagnetic
pulses in the IR, visible, or ultraviolet ranges are emitted from a
transmitter. LiDAR systems have many advantages over radio detection
and ranging (RADAR) systems, which is significant in measuring the
range of distant objects and surfaces. Synthetic aperture radar (SAR)
is another active imaging form with microwave radar. SAR usually
reflects two characteristics of targets, namely, the structure information
and the electromagnetic scattering information [394].

The combined use of these data is required in several remote sensing
applications, such as land cover mapping [395], change detection [15,
17], and data fusion [396]. Image registration of multiple modalities
can provide the ability to jointly use multiple information, leading
to a larger data volume, shorter revisit time, and the utilization of
complementary characteristics [397]. Take the widely used optical and
SAR image matching as an example. With the distinct variance of
these two imaging styles, a great appearance difference exists among
optical and SAR images, which can explain different properties of the
imaging area. In addition, the SAR system can work in both day and
night, and see through fogs and clouds, which passive optical sensors
are incapable of doing. In this case, combining the information of the
historical optical images and the currently captured SAR images is
important for analyzing the imaged area, making the registration of
optical and SAR images a core and inevitable problem. However, the
strong speckle noise in SAR images would make it difficult to extract
effective features for the matching task [175].

In addition to the matching between optical and SAR or optical
and LiDAR images, other matching targets include map-to-optical, UAV
cross-season, optical day–night, and cross-temporal image pairs. In the
following, we will provide a detail and comprehensive review of the
matching methods on these multimodal data, with the taxonomy of
area-, feature point-, and learning-based pipelines.

3.2.1. Area-based
As introduced in Section 2 and similar to medical image registration,

an area-based framework is used to handle multimodal remote sensing
image pairs. However, the core challenge is how to design and use a
suitable similarity metric to drive the iteration procedure, thus accu-
rately estimating the geometrical transformation. One direct solution
is to utilize or modify popularly used metrics that are designed for
multimodal images under information theory, such as MI and NMI. An-
other way is to indirectly use similarity metrics by reducing multimodal
images into a uniform domain, which is commonly performed with
domain transferring techniques, such as fast Fourier transform (FFT),
structural information extraction, and mapping image intensity into
a high-dimensional space by using descriptors. Advanced formulation
of the registration problem and optimization methods to search for
optimal solutions have also been investigated.

(1) Information theory-based methods
The successful use of information theory-based similarity metrics

in MMIR have prompted many researchers to follow this strategy to
handle registration problem of remote sensing image pairs with signifi-
cant nonlinear radiation difference. The similarity metric that uses MI is
useful for optical and SAR image registration [398–401] and is further
improved by using it in combination with feature-based methods [402,
403]. An MI-peak metric was introduced in [393] to achieve automatic
registration of high-resolution TerraSAR-X and Ikonos images acquired
specifically over urban areas. The proposed metric involves estimating
the joint histogram directly from image intensity values, which might
have been generated from different sensor geometries and/or modali-
ties. Xu et al. [404] proposed a symmetric form of MI, namely, Jeffrey’s
divergence (JD) as the similarity measure, and conducted mathematical
analysis and experiments on the registration of SPOT image, Landsat
TM image, ALOS PalSAR image, and digital elevation model (DEM)
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data with the affine model. By providing a larger feasible search space,
the registration model based on JD is more capable in registering
multimodal image pairs of a small overlap region.

(2) Frequency-based modality unification
To avoid the limitation in using the MI-like method, a more effective

strategy is to construct image representation, thus reducing multimodal
images into a uniform one. This approach is successfully conducted
in the frequency domain by using FFT, in which the phase correla-
tion or phase congruency (PC) algorithm developed by De [405] and
Reddy [406] is widely used to register multimodal images that require
extracting commonly existed structures for modality gap elimination.
Inspired by the successful use of phase-based methods and to address
significant modality and geometric difference, Xie et al. [407] extended
early methods [405,406,408] based on multiscale log-Gabor [409] fil-
tering and called their proposed method MLPC. This method is further
improved in LGEPC [410] and used to register optical-IR, LiDAR depth-
optical, and panchromatic to multispectral image pairs of urban areas
or buildings.

(3) Descriptor-based modality unification
Another strategy to achieve modality unification is to use a feature

descriptor to embed the image intensity into a high-dimensional feature
space. To register different channels in MODIS data captured from
island and coastline scenes, the authors in [411] proposed a novel MI
scheme based on an adapted weighted strategy, which is conducted
on the feature map constructed by efficient LoG and guided filter
methods for salient feature extraction. In [412], the authors aimed
to densely register optical and SAR images by means of optical flow-
like algorithm. In this method, a dense descriptor constructed based
on consistent gradient computation (i.e., GLOH) is exploited for op-
tical and SAR image representation and matching. Two cooperative
frameworks conducted on global and local image content are used for
global objective function optimization and local flow vector calcula-
tion, respectively. With the used coarse-to-fine strategy in this method,
the method is applicable in large displacement scenarios. More re-
cently, inspired by the feature-based method and the PC strategy, Xiang
et al. [413] combined robust feature representations of optical and SAR
images and 3D PC. To accurately estimate the 3D PC, two solutions are
proposed in the spatial and Fourier domains. The constrained energy
minimization method is used to seek the Dirac delta function in the
spatial space after inverse FFT, and a fast sample consensus fitting
scheme is applied to estimate linear phase coefficients in the frequency
domain.

(4) Methods focusing on formulation and solution
In addition to focusing on better using similarity metrics following

a traditional area-based framework, an advanced problem formulation
or solution is critical to enhance the accuracy and efficiency of reg-
istration, thus prompting great attention among the remote sensing
community due to the high resolution, noise, and large-scale nature.
In [414], the authors mainly focused on the optimization method
adapted to the MI cost function and provided a practical solution. The
proposed inverse compositional optimization method has shown that
using a specific optimization approach based on Hessian matrix can
make the registration more robust and less computationally intensive.
Hasan et al. [415] borrowed cross-cumulative residual entropy (CCRE)
for remote sensing SAR and Google satellite image registration. In
this method, a novel extension to the Parzen-window optimization
approach based on partial volume interpolation is studied for solution
space searching in the calculation of the gradients of the similar-
ity measure, in which the geometric transformation is modeled as a
second-degree polynomial or affine matrix.

Karantzalos et al. [416] proposed an automated registration frame-
work for optical-radar satellite data, which is based on MRF formula-
tion and linear programming solution, and similarity metrics such as
NCC and NMI are exploited as a spectral preservation constraint. The
experimental data cover urban, agricultural, coastal, and forest areas.
Uss et al. [417] proposed a new area-based method based on regis-

tration with accuracy estimation (RAE), and defined the Cramer–Rao
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lower bound (CRLB) of registration error for each local correspondence
between coarsely registered pair of images. In this method, CRLB is
estimated based on local image texture and noise properties, which can
help tolerate the outliers and enhance the accuracy of transformation
estimation. The whole pipeline is applied to register optical-radar-DEM
images under the affine and second-order polynomial model.

3.2.2. Feature-based
Several limitations may exist in the area-based pipeline when it

comes to performing the registration of multimodal remote sensing
images. Remote sensing images are imaged with high resolution and
typically contain heavy noise caused by imaging sensors and atmo-
sphere, leading to a large computational burden in using similarity
metrics to guide the optimization. Moreover, image pairs are often
captured under significant geometrical variance, such as large rotation,
scaling, deformations, and small overlapping area, making the solution
space complex and difficult to optimize. Feature-based pipeline is more
popularly accepted for handling remote sensing images, in which the
main challenge is to extract repeatable feature points across multimodal
images and then match them correctly.

(1) Methods based on existing feature operator
The most direct strategy achieves feature detection and description

by directly modifying off-the-shelf methods such as SIFT and Harris.
For example, the authors in [172] first coarsely registered multisource
image pairs with the SIFT feature operator together with affine model
estimation. Then, in the process of fine-scale registration, they ex-
tracted Harris corners followed by piecewise linear transformation.
Finally, the triangular irregular network (TIN) and affine estimation
are exploited for local deformation rectification. The proposed method
is validated on registration for Quickbird panchromatic image, SPOT5
panchromatic image, SPOT4, and TM multispectral images, captured in
city, lake, or river areas. In addition, Yi et al. [418] proposed SR-SIFT,
a gradient orientation modification description and scale restriction
strategy, to adapt SIFT for multispectral image registration.

To modify the classical SIFT method so that it can efficiently reg-
ister cross-bands of multispectral or panchromatic images, Sedaghat
et al. [173] improved SIFT algorithm in its feature selection strat-
egy, called uniform robust SIFT (UR-SIFT), under the full distribution
of feature location and scale. In this method, features are qualified
and selected based on stability and distinctiveness constraints. Subse-
quently, an initial cross-matching process together with a consistency
check strategy during projective transformation estimation is utilized
for correct feature correspondence construction and image alignment.
The tested data cover a variety of spatial resolution from 1 to 30
m, from both urban and rural areas. Another SIFT improvement was
introduced in [419] by enlarging the pool range of the descriptor
to adapt it to suit the characteristics of multisensor remote sensing
images. By applying a similar process as that used to improve SIFT
to make it workable in the optical and SAR image matching problem,
Fan et al. [175] described the extracted features under multiple support
regions and introduced a spatial consistent matching strategy to obtain
reliable feature correspondences, followed by RANSAC to estimate a
homography model for image registration.

(2) Methods based on advanced feature descriptor
A growing number of studies are focusing on designing valid de-

scriptors to construct more reliable feature matches so that transfor-
mation parameters can be estimated correctly. Inspired by the self-
similarity strategy [367], Sun et al. [174] introduced a multiscale
self-similarity (MSS descriptor to initially construct a feature point set.
Then, they conducted coherent point set analysis based on GMM model
to correspond point sets under affine parameter estimation. This is
considered as a probability density estimation problem together with
EM solution. The superiority of the proposed method is demonstrated
on multispectral and visible-spectrum images of a city.

Following a similar pipeline, Sedaghat et al. [207] used UR-SIFT
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[173] to uniformly detect local features and introduced an advanced
self-similarity descriptor called distinctive order-based self-similarity
(DOBSS descriptor to match the detected feature points. Then the
reliable matches are identified by descriptor cross matching and con-
sistency checking strategy constrained by projective transform. A rank-
based local self-similarity (RLSS) descriptor is introduced in [420] to
address the severe nonlinear radiometric differences between optical
and SAR images for registration. The proposed RLSS is inspired from
Spearman’s rank correlation coefficient and further utilized for tem-
plate matching of several subregions centered on the point locations
extracted by block-based Harris detector from the image pairs.

Another strategy was proposed to describe detected features by
means of PC in the frequency domain, which is commonly used to
design advanced descriptor by using it in combination with PC and
classical feature embedding methods. Ye et al. [421] integrated PC with
an orientation histogram strategy to describe extracted features based
on the structural properties of images; this process is called HOPC. The
authors first detected control points by means of block-based Harris
operator and top 𝑘 selection, then applied a fast template match-
ing scheme around these control points. A similarity metric named
𝐻𝑂𝑃𝐶𝑛𝑐𝑐 is defined from the NCC of the HOPC descriptors to guide this
matching procedure. Unreliable point matches are eliminated through
a global constraint in the projective transformation model, and the final
nonrigid registration is implemented with a piecewise linear model
estimation based on the fine matches of control points, which is val-
idated on several visible, IR, map, and LiDAR data covering urban and
suburban areas.

Fan et al. [135] proposed a feature point detection, description,
and matching pipeline by combining improved Harris and phase con-
gruency structural descriptor (PCSD) to register SAR-optical, optical-
LiDAR, and IR-optical images. Uniform nonlinear diffusion-based Harris
feature extraction was designed to reduce the influence of speckle
noise. On the basis of the observation that the structure features are
less sensitive to modality variation, they proposed PCSD by using
PC structural images in a grouping manner. With the advantage of
the PC method in alleviating the modality difference, multiscale PC
(MS-PC) descriptors [422], which are more robust to the radiation
differences between images, are used as a similarity metric to achieve
correspondences construction. Cui et al. [423] constructed a scale space
based on nonlinear diffusion function to make the proposed method
workable on different resolutions. Then a pixel-wise local PC method
was used to extract distinctive feature points. These point features are
matched through the proposed rotation invariance descriptor.

(3) Methods based on conjugated structural map
Apart from the methods that focus on designing better feature detec-

tors and descriptors, several methods attempt to extract the conjugated
structures first, such as gradient, edge, and counter. On the basis of
a structural map, a feature-based matching framework can reliably
perform feature matching and image registration.

Following this idea and to register airborne optical and C-band SAR
images, Huang et al. [142] first extracted edge features to suppress
noise. Subsequently, the preprocessed features are considered as point
sets and are matched using the improved SC, which are later used
to estimate an affine transformation. In [177], the classical SIFT is
modified to avoid failed registration caused by poor feature extraction
by using a segmentation method based on an iterative level set to
extract conjugated features; which is called ILS-SIFT. This method is
validated to register optical and SAR images under polynomial trans-
formation estimation with the proposed improved RANSAC. Another
strategy in [424] involves performing optical and SAR image registra-
tion based on iterative line extraction inspired by [425], followed by
line intersection matching under a coarse-to-fine registration scheme. In
this method, the Voronoi approach [426] together with spectral point
matching strategy [427] is utilized to enhance the matching accuracy.

Another novel registration method for optical and SAR images is
proposed in [428], which is based on straight line feature extraction

and MI. This method first uses different edge detectors to perform the
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line segments in both optical and SAR images. Then, through Hough
transform and straight-line fitting, the main straight lines of each image
are extracted, and their intersections are obtained and taken as the
candidate matching points. Finally, RANSAC is employed to coarsely
register the image pairs to generate patch pairs, which are subsequently
optimized for fine registration under MI measurement.

Given the superiority of PC in conjugated structure extraction over
gradient [429], Zhang et al. [147] proposed a novel method to register
multitemporal UAV images. The authors first utilized PC to describe
the images with respect to their structural characteristics, on the basis
of which the FAST corners are detected and then matched via the
similarity of feature descriptors constructed by a maximum index map,
followed by the RANSAC method for affine model estimation and
mismatch elimination.

Considering that structural similarity between images could be well
preserved and utilized for image registration across different modal-
ities, Ye et al. [143,430] first generated a densely described image
based on existing local descriptors such as HOG and LSS. Then, they
defined a similarity metric in the frequency domain by using 3D-FFT
together with oriented gradients to determine and match control points
from extracted Harris corners through a template matching scheme. An
iterative mismatch removal procedure is performed in cubic polynomial
model estimation and consistency judging, and the final performance
of the entire large-size image pair is verified under a piecewise linear
transformation model based on TINs and local affine estimation.

Inspired from MSER and by merging phase congruency theory, Liu
et al. [431] proposed a novel affine and contrast invariant descriptor
called maximally stable phase congruency (MSPC), which integrates
the affine invariant region extraction with structure features to achieve
image registration. In particular, The interest points are first detected
via moment ranking analysis of the PC images. The structure features
are constructed from the multiorientation PC via the proposed SFE
method. Subsequently, the extracted points are matched based on the
similarity of the introduced MSPC descriptor, followed by RANSAC
algorithm for refined matching, affine model estimation, and image
registration. On the basis of a similar strategy, the authors in [432]
extracted the common structure features from scale-adapted IR and vis-
ible images based on PC and significance ranking space. These features
were subsequently matched with the proposed kernelized correlation
filter.

A more general method based on PC and maximum index map
(MIM) was proposed by Li et al. [148], namely, radiation-invariant
feature transform (RIFT). In RIFT, the authors first detected better re-
peated corner and edge feature points based on the generated PC map.
Then, they performed MIM based on log-Gabor convolution sequence
for feature description, thus achieving rotation invariance by con-
structing multiple MIMs. The proposed method has shown promising
performance in matching general multimodal images, such as optical-
to-SAR, IR-to-optical, depth- or map-to-optical, and day-to-night image
pairs.

(4) Others
Some studies mainly focused on the formulation and framework

design of image registration. In [176], the authors proposed a two-
stage (coarse-to-fine) framework for multispectral remote sensing im-
age registration called pre- and fine registration. In the coarse stage,
the SR-SIFT [418] is utilized to initially estimate and rectify geo-
metrical differences such as scale and rotation. In the second stage,
the Harris corners are detected from the prealigned image pairs, and
point correspondences are constructed based on the local self-similarity
descriptor [367] followed by a global consistency check strategy to re-
move false matches. Finally, the authors achieved registration through
a piecewise linear transform model and tested it on multispectral image
pairs.

The structure variances between optical and LiDAR images pose
difficulty in detecting repeated points across these two modalities.
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Wong et al. [394] proposed an effective technique to align optical
and LIDAR images captured from highlands ranch or city area. In this
method, the control point (CP) candidates in LiDAR image are first
detected by selecting top responses of Harris extractor. Then, a set of
region correspondences around CPs between LIDAR and optical image
pairs are determined by means of local feature mapping transform
optimization and FFT acceleration, which are conducted based on
similarity matching with the SSD cost metric of local regions. They also
used the RANSAC algorithm to seek reliable feature correspondences,
which are further used to estimate the nonrigid transformation model
and then align the image pair via the normalized direct linear trans-
formation (DLT) algorithm. Moreover, Marcos et al. [397] aimed to
perform domain adaption via extracting a domain-invariant feature rep-
resentation for each superpixel in multisensor remote sensing images.
They proposed a midlevel representation based on spatial distribution
of spectral neighbors and formulated this in an MRF model that is
optimized by the iterated conditional mode algorithm.

More recently and considering that traditional matching methods
are not able to construct a high number and ratio of correct point
matches for multisource images due to the large radiometric and ge-
ometric distortion among them, Deng et al. [433] were inspired by
graph theory and proposed a two-stage mismatch elimination method.
They first used cluster strategy to represent the local geometric sim-
ilarity without considering any global geometric model in advance.
The cluster is constructed from matched triangles in a complete graph
formulation. Then, they used TIN to approximate a complete graph,
which can greatly simplify the computational complexity.

3.2.3. Learning-based
An increasing number of studies are focusing on the MMIR of

remote sensing images with deep techniques. The common strate-
gies in this type of method are to (1) generate deep and high-level
image representation to obtain more repeated feature points and/or
advanced descriptors to obtain a high number and ratio of accurate
feature matches; (2) learn to transfer one modality to another, thus
enabling traditional methods to successfully perform MMIR; and (3)
directly predict the underlying transformation model in an end-to-end
paradigm.

A more direct method is to integrate CNN into traditional image
matching pipeline, such as generating trainable feature detector, de-
scriptor, or similarity measurement, to enhance the registration perfor-
mance. Yang et al. [434] proposed a CNN feature-based multitemporal
remote sensing image registration method by learning for multiscale
feature descriptors and gradually increasing the selection of inliers to
improve the registration performance. The multiscale feature descriptor
is generated from a pretrained VGG network, and the TPS model is
integrated to explain the nonrigid transformation and estimated under
a GMM and EM framework. To compensate for the weakness of the
classical SIFT in terms of its use of only local low-level image infor-
mation, [196] aimed to exploit middle- or high-level information by
adopting the advantages of emerging CNN and fusing SIFT and CNN
features for multispectral and multisensor image registration under a
simple similarity transformation. Similarly, Ma et al. [197] cast the
registration task as a coarse-to-fine problem in a two-stage framework.
They initially approximated the spatial relationship with a deep ar-
chitecture based on the image feature layer, such as using VGG-16.
This deep model can serve as a feature extractor to achieve pyramid
feature detection. Later, the authors improved the accuracy of regis-
tration under the combined use of deep and handcrafted local features
together with the RANSAC method for refined feature matching and
transformation estimation. In addition, a densely connected CNN was
introduced in [435] for visible and IR remote sensing image registra-
tion. A channel-stacked network with densely connected convolutional
building blocks was designed to capture low-level features and drive
the template matching. Moreover, an augmented cross-entropy loss was
proposed to guide the training procedure with better learning ability

and stability.
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Another learning strategy introduced in [436] involves addressing
the requirement of immense data for training. The authors proposed a
generative matching network (GMN) to generate the coupled simulated
optical image for the real SAR image or generated a pseudo SAR for
a single optical image. These generated patch pairs are then fed into
a deep matching network to exploit the latent and coherent features
between multimodal patch pairs to infer their matching labels. This
method is perfected and improved in [230] by proposing an end-
to-end architecture to directly learn from generated patch pairs and
their matching labels for later registration. A similar idea is adopted
in [437], in which the authors combined conditional GANs (cGANs)
and several handcrafted methods such as NCC metric, SIFT, or BRISK to
improve the registration performance for optical and SAR images. The
core idea is to train to generate SAR-like image patches from optical
images by using cGANs, thus achieving modality unification to make it
workable for many methods designed for monomodal image matching.
The final refined feature matches are obtained through RANSAC with
an underlying affine model constraint.

Considering the difficulty in feature design and slow optimization
by gradient descent of classical methods, Zampieri et al. [438] designed
easy-to-train, fully convolutional neural networks to learn scale-specific
features, thus achieving nonrigid MMIR in linear time. The proposed
method could directly predict the optimal parameters of deformation
modeled as diffeomorphisms, thus avoiding the iterative process. This
idea is validated on registered visible images and binary maps of
buildings or houses.

We can see that CNN-based methods designed for MMIR of remote
sensing application are not as rich and active as those in the medical
field. The main reason is the difficulty in capturing sufficient multi-
modal remote sensing images for training and testing, as well as the
complexity of remote sensing images in terms of their high resolution,
hybrid noise, and large geometrical variance. These challenges require
researchers to pay more attention to collecting available datasets and
introducing more effective deep registration frameworks, loss func-
tions, and training strategies to obtain advanced matching performance
for multimodal remote sensing images.

3.3. Vision

In the field of computer vision, the most active research on image
matching involves unimodality image pairs. The core challenges are
how to handle large geometrical deformations and the low image
quality caused by viewpoint changes and negative imaging conditions.
Typical barriers include image rotation, scaling, affine, local distor-
tion, background noise, occlusion, abnormal illumination, and low
texture [2].

In MMIM, geometrical deformation can be addressed easily due
to the great efforts and achievements of researchers in general image
matching. In this regard, more attention to serious appearance differ-
ences is required. In the computer vision research area, a representative
type of MMIM may be IR and visible (IR–VIS) image pairs, aside
from cross-spectral, cross-temporal (such as cross-weather/season, day–
night), and other modalities.

3.3.1. Visible-to-infrared
The most popular topic in the visual area is VIS–IR image match-

ing, which is widely used in various visual applications (e.g., image
fusion) [13] due to the complementary information provided by the
two image types. Visible images capture reflected light, while IR images
can capture thermal radiation, thus providing information or properties
of the same target/scene from different aspects. However, due to the
differences in imaging sensors, visible images typically have high spa-
tial resolution and considerable details and chiaroscuro, but they are
highly affected by light and weather conditions. In contrast, IR images
are independent of these disturbances due to the nature of thermal
radiation-based imaging, but they typically have low resolution and
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poor texture. Therefore, IR and visible image matching remains an open
problem that requires further attention.

(1) Area-based methods
Infrared images have few details. Thus, many techniques extract

common structures first from both images and then use the aforemen-
tioned area- or feature-based matching methods or directly design deep
learning frameworks to handle the IR–VIS image registration problem.

To extract consistent features and better apply NMI for area-based
registration, Yu et al. [439] detected the edge features through a
grayscale weighted window strategy from the image pair to reduce
the joint entropy and local extrema of NMI, thus enhancing the regis-
tration performance. Another method in [440] rapidly and accurately
identified canthi regions for fever screening. The authors proposed an
area-based registration approach for VIS–IR registration by converting
the original image pairs into edge maps first. Then, they used affine and
FFD to explain the geometrical relations for coarse and fine registration.
This approach is optimized by maximizing the overall similarity of the
MI metric between the edge maps.

(2) Feature-based methods
To perform the registration of IR and visible image pairs that are

taken from slight viewpoint changes of the same buildings, Hrkać
et al. [441] conducted an experiment in which the scenario was that the
corners are more stable in both images. They detected Harris corners
from these two images, then used a simple similarity transformation to
register IR and visible building images. They chose partial Hausdorff
distance as the similarity measurement. Ma et al. [133] proposed a
nonrigid pipeline for registering visible and thermal IR face images. In
this paper, an edge map of each image is extracted then converted into
a point set as the inherent feature to represent an image. Subsequently,
the Gaussian field criterion is analyzed and validated for the point
set registration problem, and a regularized form of this criterion is
generated under a reproducing kernel Hilbert space for both rigid and
nonrigid registration. In [442], the corners were extracted based on
extremal moments of phase congruency images and described with
log-Gabor filters. Then, the matching step was performed with the sim-
ilarity of descriptors, then the RANSAC method was used to determine
reliable point correspondences. In addition, a fast visual salient feature
detector together with a descriptor-rearranging strategy is proposed
in [443] to register the visible and IR image pairs.

In building diagnostics, IR and visible images need to be combined
to obtain more comprehensive information. The authors [444] regis-
tered the image pairs of these two modalities by segmenting the edge
lines to extract quadrilateral features first and introduced a forward
selection algorithm to identify reliable feature correspondences for
transformation model estimation. Considering the significant variance
in terms of resolution and appearance caused by different imaging sen-
sors, Du et al. [141] proposed a scale-invariant PIIFD for corner feature
description and matching. In addition, a locality preservation constraint
was coupled to remove false matches to better estimate the affine ma-
trix under a Bayesian framework. In [178], the authors first extracted
edges by using the morphological gradient method, and then they
applied C_SIFT detector on edge maps for distinct point searching and
BRIEF for description, thus achieving scale- and orientation-invariant
matching.

Min et al. [445] proposed enhanced affine transformation (EAT)
for nonrigid IR and visible image registration. They first extracted
interest points from the edge maps of input images, thus casting image
registration into a point set registration problem, in which they used
SC to describe the local structure of the point set to simplify the
registration procedure. In this method, the transform model, objective
function, and optimization method are needed to achieve promising
performance. The optimal EAT model is estimated from the local
feature to explain the global deformations, and a Gaussian field-based
objective function is established and simplified by using the poten-
tial true correspondences between image pairs to guide the matching

procedure. A coarse-to-fine strategy based on quasi-Newton method



Information Fusion 73 (2021) 22–71X. Jiang et al.
is also designed and applied to determine the optimal transformation
coefficients from point sets of IR and visible images. To cope with
nonrigid registration, a feature point-based method was proposed by
Min et al. [446], in which a Gaussian weighted SC is introduced to
quickly extract matching point pairs from edge maps of image pairs.

(3) Video sequences-based methods
Another major category of IR and visible image matching methods is

on the basis of video sequence. The idea is to use target tracking infor-
mation, thus integrating the temporal domain with the image domain
to improve the overall registration performance. Bilodeau et al. [447]
proposed a registration method based on trajectory points and a novel
error function to align two multisensor images before image fusion.
The authors detected feature points based on the trajectories of the
moving objects, which are obtained using the background and a sim-
ple tracking strategy. Then, they matched the trajectory points by
using a RANSAC-based method and a novel registration criterion. Han
et al. [448] registered IR and visible image pairs by aligning hy-
brid visual features, including straight lines and interest points, which
are used to estimate the global perspective transformation and local
transform adaptation, respectively. In [449], a strategy that uses the
local shape of noisy polygon vertices for frame pair matching and
then estimates the homography transformation is introduced for VIS–IR
video registration. To register the sequences of IR and visible videos, an
integrated global-to-local framework [450] is proposed to address this
dynamic scene matching problem. An overall MI measurement of two
sequences is optimized for global homography estimation, and frame-
to-frame registration is performed to refine the local transformation for
each frame pairs. In addition, a smooth strategy is used to enforce the
temporal consistency in the temporal domain, thus smoothing the local
homographies.

Similarly combining the motion and feature information, a coarse-
to-fine framework [451] is proposed for VIS–IR video registration.
The motion information, which is captured by curvature scale space
keypoint extraction, is applied to estimate the global scale and rotation
for coarse matching. The interest points are relocated and matched with
normalized descriptors, together with a mismatch removal strategy
based on coherence checking for fine registration. These descriptors
are created from the histogram of edge orientation. To register pla-
nar VIS–IR image sequences through spatiotemporal association, Zhao
et al. [149] bypassed the use of feature extraction while first coarsely
registering the frame pairs by using the motion vector distribution as
descriptors to present the temporal motion information of foreground
contours. The fine matching stage was performed by FAST corner
matching and similar transformation estimation. The method proposed
in [452] registers nonplanar VIS–IR frame pairs by segmenting the
salient targets and matching the blob features.

(4) Learning-based methods
In complex scenes, detecting matchable features or directly training

deep networks from IR and visible images is not easy. Wang et al. [453]
proposed a two-stage adversarial network, which includes a domain
transfer network and a geometrical transformer module, to map images
across different modalities and obtain refined warped images. Baruch
et al. [454] aimed to jointly detect and match interest feature points
in one step. In this method, the authors introduced a hybrid CNN
architecture that consists of a Siamese CNN and a dual non-weight-
sharing CNN, which can well capture and leverage the joint and disjoint
cues from multimodal image patches.

Considering the shortcomings of handcrafted similarity measure-
ments in a traditional nonlinear optimization pipeline, an unsupervised
procedure is proposed in [455] to simultaneously train an image-to-
image translation network and a registration network on two given
modalities. This learned translation allows the transfer of one image
domain to another image then training the registration network by
using simple and reliable mono-modality metrics. A GAN framework
that encourages the generator to preserve the geometry information is
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applied for the translation task and then modified to generate smooth
and accurate spatial transformation, thus completing the registration
task.

(5) Others
Considering that image fusion quality is bound not only by the

quality of the algorithm, but also by the outcome of the required image
registration algorithm, [456] presented a combined method called
MIRF, which can register and fuse multimodal images for area-based
image registration and object-based image fusion. It is implemented
by dual-tree complex wavelet transform. Another integrated framework
that simultaneously addresses registration, fusion. and people tracking
of thermal and visible videos is introduced in [457]. The registration
involves maximizing the overlapped area of image pairs by using tra-
jectory feature matching with RANSAC to estimate the affine matrix. A
nonrigid registration approach for IR and visible images with mixed fea-
tures is proposed in [23] and integrated in a 3D reconstruction scheme
to acquire a more informative and complete 3D model. In [458], the
authors introduced a long-wave IR and visible-light spectrum image
matching method to detect the object from the images of these two
modalities. This method is based on edge detection and binary temple
matching strategy, followed by the use of a local fuzzy threshold to
identify high-similarity objects.

3.3.2. Cross-spectral
Cross-spectral image matching is defined as the target images are

taken from different spectral bands, such as in multispectral and visible-
to-NIR image matching.

In multispectral matching and considering that the traditionally
used measuring metrics, such as SSD or SAD, are computationally
efficient but perform poorly in multispectral image alignment, Cao
et al. [459] proposed a structure consistency boosting (SCB) trans-
form to enhance the structural similarity in the multispectral/modality
image registration problem. This approach can help avoid spectral
information distortion caused by misalignment across spectral bands
due to imaging device movement or alternation. In [460], the authors
proposed RegiNet, which uses a gradient map of the reference image to
guide the target image for registration. This method was optimized by
the structure loss that forces the networks to efficiently capture gradient
information from the reference image. PSNR and structural similarity
(SSIM) were used as evaluation metrics in the experimental part.

Another spectral image called NIR can be used to recognize the
chemical compositions of the visual target in a nondestructive and
efficient way. Many researchers study the matching problem between
NIR and visible images, and propose meaningful techniques. To deal
with the occlusion and heterogeneous problem in NIR and visible face
image matching, Yi et al. [461] introduced an edge-enhancing filtering
to capture the common structures for image pairs of different modal-
ities, and template matching is conducted on the segmented image
patches. [462] aims to develop a new solution to meet the accuracy
requirement of face-based biometric recognition. On the basis of an
analysis of properties of NIR and visible face images, a mechanism of
correlation between NIR and visible faces is learned from NIR–VISible
face pairs, then the learned correlation is used to evaluate the similarity
to guide face registration under different illumination conditions.

3.3.3. Cross-temporal
Another type of multimodality involves appearance variance due to

temporal changes, such as day to night, cross-weather, or cross-season.
In such a scenario, the appearance variance is more significant than that
caused by different sensors due to the disappearance of common details
and structures in the image pairs. An image pair captured from day and
night may have fewer details in night images but more details in the
daytime images. Fortunately, contours of buildings or trees obviously
coexist in both day and night images, or the textural details in night
images are revealed by artificial light. For cross-weather or season
image matching, the appearance of the same scene would be largely

changed, such as in rainy and sunny days, and summer and snowy
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winter days. Such methods is significance for the application of change
detection, image localization, and place recognition.

To investigate good cross-temporal matching for vision application,
Shrivastava et al. [8] studied the visual similarity between images
across different domains, such as photos taken in different seasons,
paintings, and sketches. The authors hypothesized that the important
parts of the image are those that are more unique or rare within the
visual world, following the work in [463]. Inspired by the success
of classic intensity-constancy-based image alignment methods and the
modern GAN technology, Zhou et al. [6] proposed a latent generative
model for cross-weather image alignment. In this method, the image
registration task is formulated as a constrained deformation flow esti-
mation problem with a latent encoding procedure based on the use of
intensity constancy and image manifold property.

As for matching with different lighting conditions such as day and
night, Luo et al. [5] presented a trainable point descriptor by combining
the local patch similarity constraint with spatial geometrical constraint
of the detected points, achieving promising matching performance
for multimodal image pairs. To detect repeatable point features with
drastic appearance variances caused by different weather and lighting
conditions, Verdie et al. [182] trained multiple piecewise linear regres-
sion models from aligned image pairs by using handcrafted DoG for
training set collection and then training general regressors to generate
a feature score map. The keypoints are identified as the local maxima
of this map with non-maximum suppression.

3.3.4. Others
In addition to the above-mentioned modality pairs used for match-

ing or registration, the nonlinear intensity variance caused by data
type or domain is also studied in the computer vision community. This
approach is typically represented by image–painting–sketch matching,
image-point cloud matching, semantic matching, and cross-domain
matching from image to text.

Matching for real image and paint or sketch is a challenging task
not only because of the great appearance difference but also because
of nonrigid deformations. An early relevant work involved registering
photos taken in different seasons, paintings, and sketches. Shrivastava
et al. [8] proposed an interesting work by defining visual similarity
between images across different domains. A method proposed by Aubry
et al. [9], developed a new compact representation of complex 3D
scenes. The 3D model of the scene is represented by a small set of
discriminative visual elements that are automatically learned from
rendered views.

Semantic matching denotes the input image pairs that have different
targets but similar properties, such as a dog and a cat. This problem has
attracted increasing attention, with researchers using deep techniques
to understand the semantic similarity. Choy et al. [231] proposed UCN
by using deep metric learning to directly learn a feature space that pre-
serves either geometric or semantic similarity for semantic matching.
Another method called NCN was proposed by Rocco et al. [464]. In this
method, the authors trained an end-to-end deep architecture with the
use of semilocal constraints to create reliable feature correspondences.
Other similar methods for semantic matching include [232–235].

Another interesting research topic is the matching for different
domains between real images and texts, which has been a hot topic
in recent years. We refer interested readers to [10–12] for detailed
reading.

3.4. Summary

MMIM has broad taxonomies regarding different imaging devices
or conditions in the medical, remote sensing, and computer vision
research areas. Methods in different modalities are often partial to
a specific type of registration pipeline. For instance, most medical
images can be better registered under an area-based framework because
these images usually have large overlaps, slight image deformation,
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and low resolution. However, due to the distinct vessel structures
present in both retinal images, the feature-based strategy can achieve
more accurate registration results. As for remote sensing and computer
vision research, the images for matching typically have high-resolution
and large transformations; thus, an area-based framework would cause
low accuracy and high computational burden. Therefore, a universal
method that can simultaneously handle the image matching problem
of all types of modality to satisfy different application requirements
needs to be designed. To this end, Zimmer et al. [466] tried to develop
a general metric based on the commutativity of image graph Lapla-
cians, to guide the optimization for MMIR of synthetic data, visible
to infrared data, and medical data. The typical methods reviewed
above are summarized in Tables 1 2 3, which correspond to the fields
of medical, remote sensing, and computer vision. The modality pair,
method taxonomy, transformation model, scene or target of test images,
and core idea of each method are listed in the tables. In each table,
we use ‘–’ to indicate the information that cannot be queried in its
literature. And we use many abbreviations for better view, which can
be easily inferred from body text.

4. Experimental evaluations

Over the past decades, MMIM has attracted increasing attention in
the fields of medical, remote sensing, and computer vision, serving as a
prerequisite procedure for many high-level applications such as image
fusion, image localization, and object recognition and tracking. As a
result, many diverse matching methods have been developed to address
nonlinear intensity variances and geometrical deformations of two or
more multimodal images. Hence, these typical, recently developed
methods need to undergo qualitative and quantitative comparison to
determine their strengths and weaknesses.

However, due to the distinctiveness among multimodal image pairs
in different research areas, to the best of our knowledge, no such litera-
ture comprehensively reviews MMIM methods in details and across the
medical, remote sensing, and computer vision fields. Existing related
surveys typically focus on general methods in a single research field,
either for general medical image registration, visual image matching, or
application-based review. Many survey papers provided comprehensive
analysis on method introduction and taxonomy but ignore practical
experimental evaluations. Researchers also have difficulty in directly
evaluating their techniques on public MMIM with unified standards.

In this survey, we try our best to collect multimodal image pairs
from public websites to ensure that all typical modalities used by re-
searchers are covered. In the following, we will introduce experimental
details about the constructed MMIM datasets, evaluation metrics, and
evaluation performance of typical methods in feature detection, feature
description and matching, mismatch removal, and image registration.

4.1. Constructed evaluation database

To satisfy the requirement of our experimental evaluation and con-
struct a uniform standard for future researches, we collect a complete
database that covers all typical multimodal image pairs across the
medical, remote sensing, and computer vision fields. The collected
database contains 18 modality pairs: (1) The medical research database
includes cross-matching of MR T1-, T2- and Pd-weighted images, MRI–
PET, SPECT–CT, and Retina images with different imaging methods; (2)
The remote sensing research database contains UAV cross-season image
pairs, optical day–night, LiDAR depth-optical, IR-optical, map-optical,
optical cross-temporal, and SAR-optical image pairs; (3) The computer
vision-related research database consists of VIS–IR image pairs, visible–
NIR, visible cross-season, day–night, and image–paint image pairs. We
have created in total 164 image pairs for our experimental evaluation.
Our collected database and its source are introduced in detail below.
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Table 1
Multimodal image matching methods in medical research area.

Refer. Modality Method type Transform. Target/Scene Core idea

[350] Fundus-FA Area-based Similarity Retina EM-PCA-MI

[360] Fundus-CSLO Area-based Deformation Retina Feature neighborhood MI;

[379] Fundus-SLO Feature-based Deformation Retina Mean phase image generation + RANSAC + MIND

[140] Fundus-FA Feature-based Affine Retina Harris + PIIFD

[170] Fundus-FA Feature-based – Retina UR-SIFT + PIIFD

[171] Fundus-FA Feature-based Affine Retina SIFT; PIIFD; RSW-LTS

[358] T1–T2-PD; CT–MRI Area-based Rigid Brain Sampling strategy: 3D Fast discrete curvelet
transform + MI

[376] T1–T2-PD; MRI–US Area-based Deformation Brain dLDP + MRF

[369] CT–MRI; MRI–US Area-based Deformation Brain Patch-based SSC + Discrete optimization

[359] CT/PET–MR Area-based Deformation – L-BFGS-B + CSO + FFD + Block grouping strategy

[357] T1–T2 Area-based Polynormal Brain Bayesian formulation + MRF

[465] T1–T2 Area-based FFD Brain Geodesic active fields + Polyakov energy

[362] CT-US Area-based Rigid/Affine Liver/Kidney Transfer CT to US; Locally statistical metric

[368] CT–MRI Area-based Rgid/Deformation Lung Self similarity Sescriptor: MIND + SSD + Diffusion
+ Gauss–Newton

[375] T1–T2-PD Area-based Deformation Brain Self similarity Sescriptor: ZMLD + FFD + L-BFGS

[370] T2-T1-PD; MRI–CT Area-based Rigid/Deformation Brain Entropy and Laplacian Image + SSD

[380] CT–MR; PET–MR Learning Rigid Brain Similarity function learning

[87] CT–MR Learning Deformation Head Metric Learning: SAE

[88] TRUS–MR Learning Rigid Transrectal Metric learning

[89] T1–T2 Learning Deformation Brain Metric learning+Gradient descent optimization

[381] US–MR Learning Rigid Abdominal Metric learning with 5-layer CNN + Powells
optimization

[382] MR–US Learning Rigid Fetal Brain Metric Learning with LSTM + STN

[91] CT–CBCT Learning Rigid Spine/Cardiac RL: Q-Learning with single RL agent + Greedy
supervised + Attention

[92] Depth-CT Learning Rigid Spine RL: Q-Learning for Modality reduction +
Contexture information

[94] X-ray-DRRs Learning Rigid Spine RL: Multi agents + FCN in Markov decision
process + Auto-attention

[97] T1–T2 Learning Rigid Brain Deep Transformation estimation:
CNN-11+ResNet-18+Bivariant geodesic distance
loss

[383] T1–T2 Learning Rigid Brain Deep Transformation estimation: CNN-6 + FCN-10

[101] T1–T2 Learning Deformation Brain Deep Transformation estimation: FCN + LDDMM

[384] MR-TRUS Learning Deformation Prostate Deep Transformation estimation: FCN-30 +
DDF+Label similarity-based Loss

[106] MR-TRUS Learning Deformation Prostate Deep Transformation estimation: GAN+ DDF
+Label Similarity-based Loss

[103] cine-MR Learning Deformation Cardiac Deep transformation estimation: Unet +
Label/Similarity metrics-based Loss

[113] MR–US Learning Deformation Brain Deep Transformation estimation: 3D
CNN+Intensity and Gradient-based similarity loss

[111] CT–MR Learning Deformation Pelvic Deep Transformation estimation: Unet +
NCC-based Loss

[386] T1-FLAIR Learning Affine/Non-rigid Brain Deep transformation estimation: Encoder–Decoder
+ STN + Cycle-consistent and Inverse-consistent
loss

[108] MR-TRUS Learning Rigid Prostate Biopsy GAN: Synthetic Transforms + Adversarial loss

[112] Fundus-FA Learning Deformation Retina GAN: Simulated deformations + Content loss using
NMI, SSIM and VGG + Adversarial and
Cycle-constraint Loss

[109] T1–T2;T2-FLAIR Learning Deformation Brain/Lung patch GAN: Self-reconstruction Loss + Cross-cycle
consistency + Adversarial loss + similarity metrics

[117] T1–T2 Learning Affine Brain CNN for points extraction+ MLP for transformation
estimation
– BrainWeb [467].1 BrainWeb is also called simulated brain
database (SBD), which contains a set of realistic MRI data
401 BrainWeb: https://brainweb.bic.mni.mcgill.ca/brainweb/.
volumes produced by an MRI simulator. The full 3D volumes were
simulated using three sequences (T1-, T2-, and PD-weighted) and
a variety of slice thickness, noise levels, and levels of nonuniform

https://brainweb.bic.mni.mcgill.ca/brainweb/
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Table 2
Multimodal image matching methods in the remote sensing research area.

Ref. Modality Method type Transformation Target/Scene Core idea

[414] Map–Opti. Area-based Homography Urban MI cost function + Inverse compositional
optimization

[416] Optical–Radar Area-based Deformation Urban/Farmland/Coastal MRF + Linear programming + Uniform
deformation grid + NCC & NMI

[415] Optical-SAR Area-based Affine/Polynormal Sydney CCRE Metric + Parzen-window Optimization

[393] Opti.–SAR Area-based Deformation Urban MI-peak metric

[404] SPOT–TM–SAR-DEM Area-based Affine Terrestrial region Symmetric Jeffrey’s divergence as similarity metric

[410] Opti.–IR/LiDAR; MS Area-based Similarity Urban/Building Multi-scale Log-Gabor + PC

[417] Opti.–Radar–DEM Area-based Affine/Polynormal – Cramer–Rao Lower Bound (CRLB) + Registration
with Accuracy Estimation (RAE)

[411] Cross-channel in MODIS Area-based Deformation Island/Coastline Salient feature map construction via LoG & GF +
Adapted weighted MI

[412] Opti.–SAR Area-based Deformation Urban/Suburban/Fishery Image representation: GLOH dense description +
Optical Flow-like framework

[413] Opti.–SAR Area-based Translation Urban/Suburban/Fishery Feature representation + 3D PC + Constrained
energy minimization + Fitting

[142] Opti.–SAR Feature-based Deformation Farmland Canny + Harris + SC + Affine estimation + TPS

[433] GF1-NIR;Landsat-Pan Feature-based Affine Mountain/Urban/Hill Graph-based local geometrical similarity: Cluttering
+ TIN

[172] Ms/Pan Feature-based Nonrigid City/Lake/River Coarse Step: SIFT + Affine Esti.; Fine step: Harris
+ Piecewise linear transfor. + TIN & Affine Esti.

[394] Opti.–LiDAR Feature-based Polynomial/Projec. Highlands Ranch/City Region matching: Harris-based region + SSD +
FFT + RANSAC + DLT

[173] MS/Pan Feature-based Projec. Urban/Rural Improved SIFT via Uniform Robust Feature
Selection (UR-SIFT)

[175] Opti.–SAR Feature-based Homography City Improved SIFT via Multiple support region
description + Spatial consistent matching

[174] MS–VIS Feature-based Affine City Points selection via Multi-scale Self-similarity +
GMM + EM

[176] Cross-band of MS Feature-based Piecewise Linear Plain/Mountain/Urban SR-SIFT+Harris+LSS

[207] MS/Pan Feature-based Projec. Plain/Mountain/Urban UR-SIFT + Distinctive Order-based Self Similarity
Descriptor (DOBSS)

[177] Opti.–SAR Feature-based Polynomial City/District/Airport Iterative Level Set-SIFT + Improved RANSAC

[424] Opti.–SAR Feature-based Affine Airport/Suburb/Urban Iterative line extraction + Line intersection
matching

[421] Opti.–IR–Map–LiDAR Feature-based Piecewise linear Urban/Suburban Block-based Harris + Histogram of Orientated PC
(HOPC) + NCC + Projective Transform Constraints

[147] Multitemporal UAV Feature-based Affine City PC + FAST + Maximum Index Map + RANSAC

[135] Opti.–SAR/IR/LiDAR Feature-based – – UND-Harris + PCSD Description + Mismatch
removal

[143] Opti.-SAR-Map-LiDAR Feature-based Piecewise linear Urban/Suburban/Plain Harris + HOG/LSS + Template Matching via
3D-FFT + Mismatch removal + TINs &Local Affine
Esti.

[420] Opti.–SAR Feature-based Projec. Urban/Suburban Block-based Harris + Rank-based LSS (RLSS) +
Template matching via SSD Metric

[423] Opti.–SAR–LiDAR–IR Feature-based Rigid Urban/Vegetation/Farmland Local PC + Nonlinear diffusion scale space +
Rotation invariance descriptor

[431] VIS–IR Feature-based Affine Urban PC + Moment Ranking + Struct. Extrac. +
Maximally Stable PC (MSPC) Descrip. +RANSAC

[432] VIS–IR Feature-based Affine Urban PC + Moment ranking + Struct. Extrac. +
Kernelized correlation filter matching + RANSAC

[434] Cross-Temporal Learning Nonrigid (TPS) Mountain/Plain Learnable descriptor: VGG-16 + GMM-EM

[438] VIS–Binary Map Learning Deformation Building Deformation Estim. : U-Net + FCN + Content
consistency & Estim. Error & Smooth-based loss

[196] Cross-band of MS Learning Similarity – Hybrid feature: VGG16+SIFT

[436] Opti.–SAR Learning Rigid – Modality transfer: GAN + FC Layers + Adversarial
& Mapping & Reconstruction & Cross-Entropy loss

[197] Opti.–SAR Learning Affine Suburban VGG-16+SIFT + RANSAC

[435] VIS–IR Learning Similarity Suburban CNN-7+FC-2 +Augmented entropy loss + Template
matching

[437] Opti.–SAR Learning Affine Urban Modality transfer learning: cGAN +
SIFT/BRISK/NCC + RANSAC
41
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Table 3
Multimodal image matching methods in the computer vision research area.

Refer. Modality Method type Transform. Scene/Target Core idea

[439] VIS–IR Area-based Nonrigid – Edge + NMI
[440] VIS–IR Area-based Affine + FFD Person Edge + MI
[441] VIS–IR Feature-based Similarity Buildings Harris + Robust estimation
[133] VIS–IR Feature-based Deformation Face Points from Edge Extraction + GFC + RKHS
[445] VIS–IR Feature-based Affine Multiple Points from edge extraction + GFC
[442] VIS–IR Feature-based Rigid – PC + RANSAC
[444] VIS–IR Feature-based Affine + FFD Building Edge/Quadrilateral features
[141] VIS–IR Feature-based Affine Multiple Harris + PIIFD; Relaxed matching
[178] VIS–IR Feature-based Rigid Multiple Edge/C_SIFT+BRIEF+RANSAC
[431] VIS–IR Feature-based Affine Building MSPC + RANSAC
[432] VIS–IR Feature-based Affine Building Moment ranking + KCF + RANSAC
[452] VIS–IR Feature-based – – Video sequence + Segmentation-blob feature
[447] VIS–IR Feature-based Rigid – Video sequence + Points from Trajectories+RANSAC
[448] VIS–IR Feature-based Perspective – Video sequence + Lines + Points
[451] VIS–IR Feature-based Rigid – Video sequence + Points from motion
[450] VIS–IR Area-based Homography – Video sequence + MI; Global to local
[149] VIS–IR Feature-based Similarity – Video sequence + Motion + FAST
[449] VIS–IR Feature-based Homography – Video sequence + Local shape + Polygon vertices
[455] VIS–IR Learning Deformation Plants Transfer GAN + STN
[453] VIS–IR Learning Deformation pedestrian GAN+FlowNet
[454] VIS–IR Learning Rigid Buildings Hybrid CNN + Cross entropy & Hinge Loss
[461] VIS–NIR Area-based – Face Edge map/Patch + Template matching
[462] VIS–NIR Area-based – Face Learned correlation metric
[182] Day–night Learning – Multiple Piecewise linear regression models + DoG for training + NMS
[5] Day–night Learning – Multiple Descriptor Learning + Local patch similarity + Spatial constraint
[459] MultiSpectral Area-based – – Structure Consistency Boosting (SCB) Transform
[460] MultiSpectral Learning – – Gradient map + Structural loss
[8] CS/image–paint Learning – – SVM + Defined visual similarity
[6] Cross-Weather Learning Deformation Road GAN + Deformation flow estimation
[9] 3D–Paint Learning – Building 3D Scece representation + Visual element matching
s

intensity. On the basis of this database, we construct our T1, T2,
and Pd-weighted MR images as a part of our test data.

– Atlas.2 This database consists of real CT, MRI, PET and SPECT
brain volumes, from which we select 10 MRI–PET and SPECT–CT
slice pairs. For each image pair, we warp the moving image with a
random affine matrix, thus stimulating a geometric deformation.

– Retina [330]. This database consists of 65 retina image pairs
undergoing nonrigid transformations, which are imaged under
different angiography techniques. In this database and for some
image pairs with slight deformations, we can use an affine model
to explain their geometrical transformations, thus preserving it as
our test data for feature detection and description.

– CoFSM.3 This is a newly published multimodal remote sensing
image database that consists of 6 types of modality pairs, namely,
optical-optical (cross-temporal), IR-optical, depth-optical, map-
optical, SAR-optical, and night–day. These raw image pairs help
us construct the test data of remote sensing community. Several
UAV cross-season image pairs from the 720Yun platform4 are also
collected for experimental evaluation.

– VIS–IR. We collected this VIS–IR subdataset ourselves. It contains
rich road scenes such as roads, vehicles, and pedestrians. These
images are highly representative scenes from FLIR video.5 From
these image pairs, we also construct an image fusion dataset
available at,6 which are registered by using our manually labeled
landmarks and computed affine matrixes.

– VIS–NIR [468].7 This dataset consists of 477 images in 9 cat-
egories captured using separate exposures from modified SLR
cameras with visible and NIR filters. The scene categories include

2 Atlas: http://www.med.harvard.edu/aanlib/home.html.
3 CoFSM: https://skyearth.org/publication/project/CoFSM/.
4 720Yun: https://720yun.com/.
5 VIS–IR: https://www.flir.com/oem/adas/adas-dataset-form/.
6 VIS–IR Fusion: https://github.com/jiayi-ma/RoadScene.
7 VIS–NIR: https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.
42

tml. .
country, field, forest, indoor, mountain, old building, street, ur-
ban, and water. From each category, we select several typical
raw image pairs as our test data. For each image pair, we sim-
ilarly warp the moving image with a random affine matrix, thus
stimulating a geometric deformation.

– WxBS [469].8 The wide baseline dataset consists of 31 image
pairs, simultaneously combining several nuisance factors such as
geometry, illumination, and IR–VISible. Each image pair already
provides true matched landmarks (points) for evaluation, from
which we select the ones that undergo day–night and cross-season
changes as a part of our evaluation dataset.

– Vision Cross-Weather/Season.9 This dataset, which contains a
large number of paired images undergoing day–night, weather, or
season changes, was originally used for place recognition or visual
localization. Following the description of Zhou et al. in [6], we se-
lect some representative image pairs from the Philly-Commuting
Road Scene (PRS) Dataset, the Nordland Railroad Scene (NRS)
Dataset [470], and the RobotCar Seasons (RCS) Dataset [471] as
the test data for cross-weather or season image matching.

– image–paint [8].10 In this dataset, the authors originally provided
rich types of multimodal image pairs for cross-domain image
matching. We use the painting queries together with some col-
lected from the Internet as our test data. The used images are
of 8 places or targets, including Tower Bridge in London, the
Sydney Opera, and the Arc de Triomphe. Each target contains a
real image, sketch, painting, or drawing.

From these collected raw image pairs, we manually label 15 to 20
matched landmarks (i.e., point locations) for each one (except the WxBS
dataset), which could be used to evaluate the registration accuracy

8 WxBS: https://pgram.com/dataset/cmp-wxbs-dataset/home/.
9 Vision Cross-Weather/Season: https://www.visuallocalization.net/dataset

/.
10 image–paint: http://graphics.cs.cmu.edu/projects/crossDomainMatching/
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Fig. 4. Selected raw image pairs from our collected database, which covers 18 types of modality pairs regarding the research areas of medical (top line), remote sensing (middle
line), and computer vision (bottom line).
based on the distance of these matched landmarks. In our experiments,
we first try our best to manually label these matched landmarks that
are dispersive and distinct, to estimate the affine matrix to best register
each image pair without any visible misalignment, then preserve these
landmarks and affine parameters as our Ground Truths. In particular,
we estimate the affine parameters based on direct linear transformation
(DLT) by using Matlab Toolbox ‘‘cp2tform". On the basis of the trans-
formation matrix for each image pair, we can know which two points
are matched in the fixed and moving images, and judge whether the
matched points created by the feature descriptor are correct or not.
While for non-rigid cases or that an affine model cannot explain the
geometrical transformation anymore, we just preserve these matched
landmarks as ground truths and only use them for image registration
test. In fact, the correctness of putative matches for non-rigid cases
could be labeled manually one by one, as performed in Refs. [2,333].
And the registration is conducted under a non-rigid model such as
TPS [336]. All the collected data and their ground-truth landmarks, as
well as transformation matrices are integrated and available at.11 Some
selected raw image pairs in this database are shown in Fig. 4.

4.2. Evaluation on feature detection

On the basis of our collected multimodal image data and with the
help of these given transformation matrices, we first conduct the per-
formance comparisons of feature detection. With the existing literature
in image matching taken into consideration [129,236], three metrics
are commonly used for performance evaluation in keypoint detection
task, namely, repeatability (Rep.), entropy (En.), and efficiency or runtime
(RT ).

Suppose the feature detector extracts 𝑀 and 𝑁 keypoints from the
fixed image and moving image, respectively. Hence, the detected point
number (DPN) is defined as 𝐷𝑃𝑁 = 𝑀 + 𝑁 . The repeatable point
number (RPN) is identified as the number of matchable points that
have the same location in the real world (simultaneously extracted
in two images), which are measured through our given ground-truth
transformation matrix by transforming these points in the moving
image then searching their nearest points in the fixed image within a
pixel distance threshold (in our experiment, the threshold equals 5). On
the basis of these definitions, repeatability can be defined as

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝑃𝑁
𝐷𝑃𝑁

. (2)

The entropy can evaluate the influence of the detector on a de-
scriptor in terms of spatial distribution, which measures if the detected
keypoints are sufficiently distributed in the image. A high value of this
metric indicates that the extracted points are easier to be distinguished

11 Available at: https://github.com/StaRainJ/Multi-modality-image-
matching-database-metrics-methods.
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by local descriptors due to their nonclustered properties [472]. Follow-
ing the instruction in [472,473], we first create a 2𝐷 evenly spaced
binning of the feature points and denote the center of each bin as
𝑝 = (𝑥, 𝑦). Each point’s contribution to a given bin is weighted by
a Gaussian relative to its distance to the bin’s center. A bin 𝑏(𝑝) at
position 𝑝 can be calculated with 𝑏(𝑝) = 1

𝑍
∑

𝑚∈𝑀 𝐺(‖𝑝 − 𝑚‖), where
𝑚 is a keypoint in the full set 𝑀 of detected interest points, and 𝐺 is
a Gaussian function. A constant of 1

𝑍 is added to enable the sum of all
bins to evaluate to 1. From these bins, we can obtain

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
∑

𝑝
−𝑏(𝑝) log 𝑏(𝑝). (3)

In this experiment, we choose 12 typical detectors to represent the
detection of corner feature, blob feature, and learnable feature. The
compared methods include Harris [118], FAST [144], and BRISK [209].
We use three corner detectors with the input of the phase congruency
map, as performed by many other researchers [147,148,432] (i.e.,
PC-Harris, PC-FAST, and PC-BRISK). The blob feature detectors for
comparison are DoG (SIFT) [121], SURF [122], and MSER [128].
For learning-based detectors, we choose TILDE [182], LFnet [188],
SuperPoint [185] for evaluation. Harris, FAST, BRISK, and SURF are
directly implemented with the MATLAB toolbox, in which we restrict
the number of detected features in each image within 2𝑘 by selecting
the top responses. DoG (SIFT) and MSER are implemented with VLFeat
ToolBox12 [474]. We directly use the authors’ source codes to apply
these learning-based detectors in our evaluation. All the handcrafted
detectors are performed on a desktop with 4.0 GHz Intel Core i7-6700K
CPU, 16 GB memory. The deep methods are performed on a server with
2.0 GHz Intel Xeon CPU, 128 GB memory.

The qualitative results of representative feature detectors on typical
multimodal image pairs are presented in Figs. 5 6 7. For each image
pair, the repeated points under a threshold of 3 and 5 pixels are
denoted by blue and green stars, respectively, while the unmatchable
points whose distances are beyond 5 pixels are shown with red dots.
All the quantitative results on 18 datasets are shown in Tables 4–9,
which are classified into three parts in regard to medical, remote sens-
ing, and computer vision communities. For each dataset, the average
𝐷𝑃𝑁,𝑅𝑃𝑁,𝑅𝑒𝑝. (%), 𝐸𝑛., and 𝑅𝑇 (ms) of each method are depicted in
these tables. The overall detection performance for these three research
communities is also shown at the end of the tables, and the first,
second, and third best results are indicated in bold red, green, and blue,
respectively.

From the results, we can see that FAST and SURF detectors can still
achieve promising detection performance in MMIM in terms of repeata-
bility and execution efficiency. The combination of PC map can greatly
enhance the performance of corner detectors but requires additional

12 VLFeat ToolBox: https://www.vlfeat.org/.

https://github.com/StaRainJ/Multi-modality-image-matching-database-metrics-methods
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Fig. 5. Qualitative results of 12 feature detectors on typical multimodal image pairs in the medical research area. (blue = repeated points with threshold of 3 pixels, green =
repeated points with threshold of 5 pixels, red = unmatchable points). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
computational burden. As for learning-based methods, SuperPoint can
maintain good generalization ability. Readers can refer to the tables for
more detailed results or test other detectors with our public datasets
and ground truth.

4.3. Evaluation on feature description

In this part, we will test several representative feature descriptors on
these multimodal image datasets. As introduced in [472], three metrics
are mainly used for evaluation, namely, matching score, precision, and
recall. Before evaluation, suppose we have obtained a set of 𝑁0 putative
matches  = {(𝐱𝑖, 𝐲𝑖)}

𝑁0
𝑖=1 created by a combination of feature detector

and descriptor, where 𝐱𝑖 and 𝐲𝑖 are pixel coordinates of interest points
in fixed and moving images, respectively, from which the correct match
set  is identified by using our ground-truth transformation within a
pixel distance threshold 𝜖, i.e.,  = {(𝐱𝑗 , 𝐲𝑗 )}

𝑁𝑐
𝑗=1| ‖𝐱𝑗 − (𝐲𝑗 )‖ ≤ 𝜖, where

𝑁𝑐 ≤ 𝑁0 and  indicates the ground-truth geometrical transformation,
and in our experiment, 𝜖 equals 5. Therefore, the putative match
number (PMN) is defined as the cardinality of the putative match set,
44
i.e., 𝑃𝑀𝑁 = || = 𝑁0. The correct match number (CMN) is defined as
the cardinality of the correct match set, i.e., 𝐶𝑀𝑁 = || = 𝑁𝑐 . On the
basis of these definitions, the matching score (MS) can be calculated as
the ratio between the number of features that belong to correct matches
and the number of all detected features. The Precision, also known as
inlier ratio, defines the number of correct matches out of the set of
putative matches, which is calculated with

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐶𝑀𝑁
𝑃𝑀𝑁

. (4)

Recall quantifies how many of the ground-truth correct matches are
actually found by descriptor matching. Inspired by [472], we define
Recall as the ratio between the number of features belonging to correct
matches and the number of all repeatable features. The RunTime (RT )
during the entire procedure of feature detection and description is used
to evaluate the execution efficiency.

In this experiment, we select three well-known classical feature
matchers in the computer vision area for comparison, namely, SIFT
[121], SURF [122], and ORB [120], as well as two deep matchers,
i.e., SuperPoint [185] and LFnet [188]. Two widely used descriptors
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Fig. 6. Qualitative results of 12 feature detectors on typical multimodal image pairs in the remote sensing research area. (blue = repeated points with threshold of 3 pixels, green
= repeated points with threshold of 5 pixels, red = unmatchable points). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
tailored for multimodal images called PIIFD [140] (only test on medical
data) and RIFT [148] are also used for comparison. Five top-performing
detectors that are measured in the detection experiment are used in
combination with PIIFD and RIFT for evaluation. The chosen detectors
are SURF, PC-FAST, PC-BRISK, TILDE, and SuperPoint. Similar to the
feature detection experiment, SIFT is implemented with VLFeat Tool-
Box, and the deep methods are implemented with their source codes
provided by the authors themselves. ORB is implemented with OpenCV
library [475], and the others are implemented by MATLAB Toolbox.
All the handcrafted methods are performed on a desktop with 4.0 GHz
Intel Core i7-6700K CPU, 16 GB memory, while the deep methods are
performed on a server with 2.0 GHz Intel Xeon CPU, 128 GB memory.

The qualitative results of representative feature descriptor matching
methods on typical multimodal image pairs are presented in Figs. 8 9
10. For each image pair, the correct matches under a threshold of 3 and
5 pixels are denoted by blue and green lines, respectively, while incor-
rect matches whose distances are beyond 5 pixels are shown with red
lines. All the quantitative results for feature descriptor matching on 18
datasets are listed in Tables 10–15, which are classified into three parts
in regard to medical, remote sensing, and computer vision community.
For each dataset, the average correct match number, putative match
number, matching score (%), precision (%), recall (%), and runtime
(ms) of each method are listed in these tables. The overall descriptor
matching performance for these three research communities is shown
at the end of the tables. The first, second, and third best results are
indicated in bold red, green, and blue, respectively.

From the results, we can see that classical descriptors such as SIFT,
SURF, and ORB are not workable anymore in most multimodal cases,
while RIFT and SuperPoint can handle most types of MMIM tasks, but
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RIFT is typically time consuming. In particular and for the medical data,
feature matching on different weighted MR images can be successfully
achieved due to the good preservation of structure information between
two modalities. In contrast, the matching for MRI–PET or SPECT–CT
modality pair would not be easy to realize, because few cues can be
used in these two cases even by using manual matching. As for retina
images, the RIFT can achieve satisfying performance, while PIIFD can
also perform well but consumes too much time. In these datasets,
we use PC-FAST detector and RIFT descriptor to construct a putative
match set for subsequent mismatch removal and image registration.
The comparison experiments on remote sensing datasets show that only
the RIFT descriptor can achieve promising performance with a high
number and ratio of correct matches. We also choose PC-FAST and RIFT
for putative match set construction. This superiority is quite different
in the visual domain. Several matchers proposed for visual applications
maintain their feasibility in visible–NIR, cross-season, and day–night
image matching due to the unremarkable difference of image intensity.
In our evaluation and VIS–IR image matching, only RIFT can achieve
promising performance. More efforts are still required to handle the
matching of image and painting. Among these vision datasets, we use
SuperPoint’s detector and RIFT to create putative matches.

4.4. Evaluation on mismatch removal

As shown in the feature matching results based on the similarity
of local descriptors, the use of only image local information to search
matched interest features would inevitably create a large number and
high ratio of false matches. This situation may largely damage the
accuracy of image transformation or deformation estimation and affect
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Fig. 7. Qualitative results of 12 feature detectors on typical multimodal image pairs in the computer vision research area. (blue = repeated points with threshold of 3 pixels,
green = repeated points with threshold of 5 pixels, red = unmatchable points). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
the registration considerably. A mismatch removal procedure needs
to be integrated to find as many correct matches as possible and
keep the mismatches to a minimum. We first create a set of putative
matches for each image pair as introduced in the last experiment,
from which we can know which match is correct in advance, referring
to the definition of a correct match set . This correct match set
would serve as our ground truth in the mismatch removal experiment.
On the basis of the putative match set and the correct match labels,
three evaluation metrics are employed, namely, Precision, Recall, and
F-score. By verifying the consistency between the matches identified by
mismatch removal methods and ground-truth correct match sets, we
can obtain the number of true positives (TP), true negatives (TN), false
positives (TP), and false negatives (FN). Thus, the Precision and Recall
can be obtained by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (5)

While F-score, as a summary statistic of precision and recall, is calcu-
lated as follows:

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (6)

In this experiment, 12 mismatch removal methods are used for
comparison, namely, RANSAC [301], MAGSAC++ [317], ICF [323],
VFC [319], LLT [325], GS [243], SM [241], LPM [330], GMS [329],
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mTopKRP [332], LFGC [341], and LMR [342]. These methods are rep-
resentative of resampling-based, nonparametric model-based, graph-
based, relaxed, and learning-based methods. All the methods are per-
formed on a desktop with 4.0 GHz Intel Core i7-6700K CPU, 16 GB
memory by using the source codes provided by their authors.

The qualitative results of representative mismatch removal methods
on typical multimodal image pairs are presented in Figs. 11 12 13. For
visibility, in each image pair, at most 100 randomly selected matches
are presented, and the true negatives are not shown. The blue, green,
and red lines in these three plots represent TP, FN, and FP matches,
respectively, preserved by the evaluated mismatch removal methods.
All the quantitative results for Precision, Recall, F-score, and RunTime
on each dataset are shown in Fig. 14. Methods that use resampling
or nonparametric model can achieve satisfying precision due to their
global geometrical constraints on these test data that are of linear
transformations. Graph-based methods are also acceptable, but they
are limited by the large computational burden. Relaxed methods such
as GMS and LPM are easy to implement and surprisingly efficient
due to their relaxed geometrical constraints. Learning-based methods
show promising ability in mismatch removal task by learning from
sparse point sets. LMR can also achieve satisfying results, because the
handcrafted high-dimensional match representations can easily learn
to identify outliers. However, directly learning geometrical properties
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Fig. 8. Qualitative descriptor matching results of 12 methods on typical multimodal image pairs in the medical research area. (blue = correct matches with threshold of 3 pixels,
green = correct matches with threshold of 5 pixels, red = incorrect matches). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
to guide the network to filter outliers by using a deep convolutional
approach, such as LFGC, remains a challenging problem.

as performed in Refs. [2,333]. And the registration is conducted
under a non-rigid model such as TPS [336].

4.5. Evaluation on image registration

In this part, we will test the image registration performance by
using the final matched features created by the above feature detectors,
descriptors, and mismatch removal methods. As aforementioned, for
image pairs with ground-truth affine matrices, we directly use direct
linear transformation to estimate their optimal transformation param-
eters. While for non-rigid cases, we model their transformations as
TPS, and directly estimate parameters for non-rigid registration, as
performed in [336]. To evaluate the registration accuracy, two types
of metrics are chosen. The first one is obtained from the distance of
our ground-truth matched landmarks, which is inspired from [476]
and denoted as TRE (i.e., target registration error). Metrics of this type
are more objective for measuring registration accuracy [336]. In our
experiment, this is indicated by the root mean square error (RMSE),
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maximum error (MAE), and median error (MEE) between the landmark
pairs with the following definitions:

𝑅𝑀𝑆𝐸 =

√

√

√

√1∕𝐿
𝐿
∑

𝑖=1
(𝐟𝑖 −  (𝐦𝑖))2, (7)

𝑀𝐴𝐸 = max
{
√

(𝐟𝑖 −  (𝐦𝑖))2
}𝐿

𝑖=1
, (8)

𝑀𝐸𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛
{
√

(𝐟𝑖 −  (𝐦𝑖))2
}𝐿

𝑖=1
, (9)

where {𝐟𝑖,𝐦𝑖} is the 𝑖−th ground-truth matched landmark, 𝐟𝑖 and 𝐦𝑖
are respectively annotated from fixed image and moving image.  is
the transformation function from the moving image to the fixed image,
𝐿 represents the number of used landmarks, and max(⋅) and 𝑚𝑒𝑑𝑖𝑎𝑛(⋅)
return the maximal and median value of a set, respectively.

Another type of metric is typically designed consistent with the
perception of human beings, which are widely used in case no landmark
or other golden standard is available to evaluate the accuracy of image
registration. These evaluation metrics commonly include peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [411], and mutual
information (MI) between the warped moving image and fixed image.
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t Num dal datasets of medical field (Part I).

R RPN Rep. (%) En. RT (ms)

1 132.18 59.78 5.40 14.73
2 508.64 69.96 5.60 2.83
6 83.09 55.02 5.39 6.93
1 146.09 64.50 5.57 130.77
1 685.45 88.90 5.68 119.61
1 103.36 57.10 5.55 127.35

6 93.27 55.86 5.45 64.31
1 258.36 72.41 5.66 11.25
4 75.82 51.60 5.26 61.07

8 23.64 32.24 5.50 798.43
5 244.73 69.61 5.78 564.56
1 235.27 83.08 5.58 154.40

t Num dal datasets of medical field (Part II).
SPEC All medical data

DPN ms) DPN RPN Rep. (%) En. RT (ms)

214.4 0 246.83 87.88 34.23 5.12 35.14
243.0 653.03 343.33 47.39 5.19 3.36
126.0 7 180.77 64.08 35.06 5.07 9.01
308.3 .81 440.53 251.79 52.44 5.56 516.39
1091 .39 1193.19 965.22 81.61 5.65 473.35
264.0 .32 513.94 318.81 53.20 5.60 479.00

116.0 63 487.67 305.88 51.89 5.48 209.17
333.6 4 592.01 400.64 63.77 5.52 25.16
27.15 39 127.18 48.17 34.70 4.69 67.29

127.4 .79 225.98 83.60 36.19 5.58 1996.94
419.8 69 409.66 237.08 59.78 5.68 546.56
188.4 30 320.13 203.72 60.41 5.55 254.01
Table 4
Feature detection results about Detected Point Number, Repeated Poin
Datasets PD–T1

Detectors\Metrics DPN RPN Rep. (%) En.

Harris 149.55 36.40 23.94 5.18
FAST(ORB) 466.70 317.80 67.69 5.51
BRISK 123.50 50.60 39.36 5.34
PC-Harris 197.45 90.50 45.36 5.54
PC-FAST 717.45 576.80 80.35 5.67
PC-BRISK 169.95 82.60 47.62 5.54

DoG(SIFT) 157.20 85.60 54.43 5.41
SURF 308.55 221.30 71.08 5.60
MSER 101.90 59.80 58.38 5.16

TILDE 66.95 25.90 39.00 5.46
LFnet 323.45 230.70 71.17 5.79
SuperPoint 270.25 212.60 78.04 5.58

Table 5
Feature detection results about Detected Point Number, Repeated Poin
Datasets MRI–PET

Detectors\Metrics DPN RPN Rep.
(%)

En. RT (ms)

Harris 200.75 28.40 14.02 5.07 19.88
FAST(ORB) 966.20 391.80 40.44 5.22 4.59
BRISK 221.85 65.20 29.69 5.15 11.74
PC-Harris 236.70 75.10 30.36 5.40 192.45
PC-FAST 902.90 672.70 73.11 5.46 159.89
PC-BRISK 254.45 96.90 37.85 5.45 158.68

DoG(SIFT) 191.40 71.30 36.81 5.23 91.39
SURF 380.30 166.20 43.11 5.30 14.42
MSER 77.45 6.10 8.08 4.66 45.22

TILDE 112.75 26.90 23.71 5.51 1066.23
LFnet 407.00 228.60 56.12 5.72 563.92
SuperPoint 189.65 51.10 27.17 5.37 188.88
ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
PD-T2 T1–T2

T (ms) DPN RPN Rep. (%) En. RT (ms) DPN

4.36 157.60 81.20 50.13 5.18 14.28 218.86
.81 645.90 387.40 59.67 5.54 2.99 719.05
.55 135.40 68.30 48.32 5.38 6.71 148.59
30.36 193.50 118.00 60.56 5.51 131.30 226.05
17.44 730.25 636.00 86.89 5.69 118.30 771.45
21.27 157.95 85.80 52.85 5.52 121.52 180.23

5.04 158.05 89.90 56.61 5.42 64.56 165.27
0.44 352.50 256.10 72.45 5.63 10.96 354.73
4.96 147.40 85.60 58.06 5.30 59.45 147.59

31.76 71.85 51.70 71.59 5.48 806.44 74.05
00.84 345.95 273.50 78.98 5.79 495.96 351.41
50.64 289.65 237.70 81.86 5.61 151.09 282.73

ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
T–CT Retina

RPN Rep.
(%)

En. RT (ms) DPN RPN Rep. (%) En. RT (

5 56.50 25.55 5.17 20.22 377.66 132.64 32.39 4.95 77.1
0 74.10 30.02 5.08 2.80 755.41 359.05 33.22 4.75 3.73
0 32.00 25.32 5.05 6.34 246.86 71.73 23.89 4.64 12.0
5 158.10 50.79 5.43 179.35 912.61 555.91 57.09 5.72 1342
.85 938.30 85.53 5.44 155.08 1990.80 1565.55 78.63 5.81 1244
5 108.20 40.96 5.42 159.73 1214.52 825.41 66.21 5.82 1254

5 28.10 24.07 5.15 73.22 1238.23 834.18 66.47 5.80 521.
0 156.40 46.91 5.41 13.22 1153.02 832.18 69.85 5.54 54.9

2.00 7.48 3.83 21.48 187.73 53.36 30.28 4.36 114.

0 19.90 15.63 5.50 1138.04 533.41 207.59 37.61 5.77 4424
5 235.50 56.10 5.70 544.66 500.00 224.50 44.90 5.52 574.
0 60.90 31.52 5.34 183.14 494.14 304.41 60.32 5.68 455.
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t Num dal datasets of remote sensing field (Part I).
Day–n Infrared-optical

DPN s) DPN RPN Rep. (%) En. RT (ms)

1032. 1287.30 571.80 41.10 5.58 109.18
1462. 1994.30 1245.20 62.44 5.71 12.45
808.0 1156.20 674.60 55.09 5.83 41.97
1359. 6 1005.90 529.20 51.74 5.79 1459.39
2000. 0 2000.00 1413.40 70.67 5.87 1339.21
1395. 3 1061.90 593.00 55.25 5.89 1369.46

1450. 1 1508.20 969.60 64.63 5.92 609.47
1577. 1892.50 1396.80 74.36 5.84 90.14
632.4 6 1934.30 946.80 48.93 5.85 785.95

643.8 24 844.30 514.80 58.89 5.87 4574.00
500.0 0 500.00 222.60 44.52 5.59 629.17
1380. 5 1075.50 638.20 57.71 5.85 500.01

t Num dal datasets of remote sensing field (Part II).
Optica All remote sensing data

DPN ) DPN RPN Rep. (%) En. RT (ms)

1387. 1327.46 786.29 55.47 5.54 81.75
2000. 1881.39 1241.83 64.88 5.66 8.55
1646. 1401.99 895.02 59.27 5.77 29.93
1193. 5 1108.64 694.36 60.87 5.71 1258.04
2000. 8 1975.13 1443.95 73.03 5.79 1168.64
1166. 6 1115.60 675.45 59.98 5.82 1187.64

2123. 1320.17 742.38 55.98 5.88 561.15
1992. 1864.80 1364.52 72.69 5.78 78.82
1569. 1274.21 644.19 45.30 5.69 511.99

1206. 0 837.44 519.90 61.81 5.86 4353.40
500.0 500.00 243.38 48.68 5.61 572.32
1152. 1323.70 860.52 62.92 5.75 499.20
Table 6
Feature detection results about Detected Point Number, Repeated Poin
Datasets UAV Cross-season

Detec-
tors\Metrics

DPN RPN Rep.
(%)

En. RT (ms)

Harris 1585.50 1121.75 68.74 5.67 61.43
FAST(ORB) 2000.00 1340.00 67.00 5.73 10.52
BRISK 1844.25 1262.75 68.47 5.93 34.05
PC-Harris 699.88 361.75 51.85 5.56 979.52
PC-FAST 1982.13 1378.50 69.52 5.76 904.56
PC-BRISK 776.88 399.50 51.16 5.74 907.03

DoG(SIFT) 835.00 437.00 49.83 5.86 391.41
SURF 2000.00 1378.25 68.91 5.83 77.40
MSER 1307.25 808.75 52.39 5.82 507.71

TILDE 813.50 467.25 57.39 5.91 3759.70
LFnet 500.00 241.75 48.35 5.67 551.71
SuperPoint 785.38 431.25 58.01 5.55 402.83

Table 7
Feature detection results about Detected Point Number, Repeated Poin
Datasets Map-optical

Detec-
tors\Metrics

DPN RPN Rep. (%)En. RT (ms)

Harris 1493.25 902.13 61.56 5.73 78.42
FAST(ORB) 2000.00 1210.13 60.51 5.74 7.90
BRISK 1687.06 1129.38 67.21 5.84 30.69
PC-Harris 1344.06 870.38 63.98 5.81 1194.83
PC-FAST 2000.00 1367.13 68.36 5.86 1104.13
PC-BRISK 1253.31 842.88 65.40 5.88 1122.60

DoG(SIFT) 1112.63 578.00 50.90 5.86 501.25
SURF 2000.00 1451.50 72.57 5.80 86.89
MSER 1238.63 514.38 39.62 5.75 496.54

TILDE 946.44 672.88 68.70 5.85 4189.59
LFnet 500.00 223.00 44.60 5.65 545.30
SuperPoint 1893.00 1233.88 65.13 5.85 547.57
ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
ight Depth-optical

RPN Rep.
(%)

En. RT (ms) DPN RPN Rep. (%) En. RT (m

57 391.00 31.91 5.33 77.74 1313.25 1021.17 76.29 5.51 61.78
29 681.57 44.66 5.57 6.01 1997.33 1614.83 80.87 5.60 6.98
7 199.86 24.65 5.60 19.33 1488.83 1183.00 76.30 5.76 26.64
79 866.43 62.00 5.82 1159.92 1121.67 877.67 77.63 5.66 941.4
00 1466.14 73.31 5.85 1082.35 2000.00 1625.00 81.25 5.75 892.1
36 749.43 53.22 5.86 1099.85 1074.50 801.17 73.53 5.79 901.2

93 704.86 49.59 5.82 585.07 1171.25 836.33 68.92 5.91 483.2
07 910.71 56.16 5.74 59.12 1828.33 1471.17 80.23 5.76 61.76
3 87.43 13.70 5.47 269.39 1360.17 985.33 67.53 5.68 529.1

6 331.57 48.99 5.83 4256.35 604.33 430.33 69.33 5.82 3408.
0 226.14 45.23 5.63 624.99 500.00 318.17 63.63 5.53 475.4
79 926.43 64.48 5.75 480.68 1531.83 1219.17 78.67 5.79 414.5

ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
l cross-temporal SAR-optical

RPN Rep. (%)En. RT (ms) DPN RPN Rep. (%)En. RT (ms

08 828.33 59.55 5.58 114.05 1266.50 771.17 53.04 5.41 69.24
00 1391.00 69.55 5.63 9.42 1804.50 1347.33 74.28 5.64 8.53
33 1089.50 68.36 5.80 36.50 1293.58 849.67 60.27 5.72 25.24
17 670.83 56.99 5.70 1948.15 762.33 458.50 56.15 5.53 1101.1
00 1442.50 72.13 5.77 1798.92 1837.83 1410.00 75.94 5.68 1035.4
50 602.67 56.85 5.82 1836.75 866.33 565.67 60.06 5.71 1049.6

67 1116.00 55.69 5.90 879.75 956.50 552.00 54.42 5.87 445.31
33 1471.17 73.90 5.76 109.71 1815.92 1528.67 84.50 5.73 68.72
08 800.17 58.90 5.74 637.66 1117.50 607.83 46.19 5.61 447.29

42 670.67 66.09 5.90 6184.59 792.33 513.83 61.16 5.88 4011.0
0 223.00 44.60 5.60 519.15 500.00 254.67 50.93 5.58 663.33
08 658.17 55.91 5.72 664.04 1027.25 601.00 57.03 5.66 439.72
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t Num dal datasets of computer vision field (Part I).

RT RPN Rep. (%) En. RT (ms)

43 349.17 51.00 5.07 132.45
2.6 1200.33 69.86 5.20 11.04
7.3 523.17 44.88 5.43 85.02
66 613.67 53.36 5.33 2208.21
61 954.50 67.81 5.44 2081.55
65 501.67 39.33 5.65 2206.35

31 1411.33 42.19 5.81 967.41
26 694.50 57.81 5.35 122.41
84 536.50 35.66 5.29 509.21

25 580.83 40.74 5.65 7774.93
60 237.17 47.43 5.38 573.25
32 658.83 57.16 5.40 770.94

t Num dal datasets of computer vision field (Part II).

RT RPN Rep. (%) En. RT (ms)

27 545.92 50.65 4.87 135.25
11 1031.39 61.05 5.16 7.46
50 663.12 51.46 5.38 34.12
44 896.39 61.91 5.55 2430.38
44 1339.47 72.51 5.63 2364.16
44 892.22 57.63 5.73 2404.30

20 1402.80 58.25 5.88 943.61
24 1099.12 65.63 5.49 119.04
94 775.67 50.81 5.33 502.68

14 779.69 56.77 5.77 8118.40
55 264.16 52.88 5.38 557.21
14 942.71 67.44 5.57 773.46
Table 8
Feature detection results about Detected Point Number, Repeated Poin
Datasets Visible–infrared

Detectors\Metrics DPN RPN Rep. (%) En.

Harris 84.85 10.30 10.90 4.17
FAST(ORB) 359.85 121.30 27.64 4.86
BRISK 135.00 28.90 17.70 4.97
PC-Harris 403.90 183.50 42.02 5.56
PC-FAST 1553.05 1300.80 80.11 5.74
PC-BRISK 668.45 403.20 51.87 5.77

DoG(SIFT) 810.65 478.90 48.82 5.85
SURF 570.30 356.60 52.27 5.40
MSER 179.60 53.60 18.76 4.94

TILDE 268.85 96.30 33.13 5.65
LFnet 497.70 246.90 49.60 5.64
SuperPoint 493.60 322.00 57.40 5.59

Table 9
Feature detection results about Detected Point Number, Repeated Poin
Datasets Day–night

Detectors\Metrics DPN RPN Rep. (%) En.

Harris 1232.50 242.50 22.31 5.14
FAST(ORB) 2000.00 624.00 31.20 5.21
BRISK 1667.50 499.00 33.36 5.47
PC-Harris 2000.00 956.00 47.80 5.55
PC-FAST 2000.00 913.50 45.67 5.59
PC-BRISK 2000.00 823.00 41.15 5.81

DoG(SIFT) 5160.75 2729.00 56.21 5.94
SURF 2000.00 743.00 37.15 5.40
MSER 2323.75 691.50 32.17 5.48

TILDE 2457.00 1109.50 49.72 5.86
LFnet 500.00 116.00 23.20 5.20
SuperPoint 2000.00 1176.50 58.83 5.50
ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
Visible-near infrared Cross-season

(ms) DPN RPN Rep. (%) En. RT (ms) DPN

.20 1131.43 766.27 65.62 5.03 154.57 736.25
0 1819.87 1328.27 72.74 5.25 7.88 1764.17
0 1355.05 907.17 65.53 5.50 31.01 1061.00
4.90 1634.27 1185.87 71.72 5.59 2869.17 1071.00
3.72 2000.00 1473.57 73.68 5.64 2816.17 1477.50
9.41 1756.70 1138.73 64.79 5.73 2827.00 1118.17

4.07 2416.33 1602.37 65.01 5.90 1052.03 2342.75
.66 1963.47 1447.93 73.74 5.55 137.05 1261.92
.75 1481.98 1040.53 65.67 5.45 589.16 1218.33

36.29 1457.37 1018.37 68.81 5.83 9449.45 1181.00
9.28 500.00 290.33 58.07 5.31 539.01 500.00
7.15 1587.42 1181.40 73.63 5.60 861.56 1077.58

ber, Repeatability, Entropy metrics and RunTime of 12 feature detectors on multimo
image–paint All vision data

(ms) DPN RPN Rep. (%) En. RT (ms) DPN

1.96 2000.00 1079.00 53.95 5.36 219.53 891.31
.32 2000.00 1027.00 51.35 5.38 14.14 1526.11
.15 2000.00 852.00 42.60 5.58 58.45 1095.97
82.43 2000.00 918.00 45.90 5.55 4150.50 1336.59
06.55 2000.00 865.00 43.25 5.55 3919.05 1844.81
77.91 2000.00 869.00 43.45 5.67 4212.88 1471.32

12.37 3888.00 1951.00 50.18 5.95 1706.27 2221.68
8.86 2000.00 1200.00 60.00 5.42 222.35 1595.48
7.33 3058.50 1654.00 54.08 5.49 1159.11 1250.44

473.13 2333.50 987.00 42.30 5.89 13359.46 1239.65
2.80 500.00 110.00 22.00 5.28 495.38 499.53
35.65 2000.00 1225.00 61.25 5.51 1284.13 1327.02
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atch N datasets of medical field (Part I).

Rec. PMN MS (%) Pre. (%) Rec.
(%)

4.53 10.45 2.38 17.37 4.11
24.5 96.91 21.42 79.79 29.11
3.81 347.00 2.19 6.94 3.29

15.6 96.18 20.89 76.83 28.41
25.0 71.82 19.45 93.98 26.89
20.6 159.18 21.09 99.36 23.68
34.1 41.09 20.66 86.60 36.12
14.1 18.00 7.53 25.44 16.47
36.7 96.45 36.41 99.30 42.88
23.9 80.73 19.47 84.75 27.98

32.2 162.73 40.33 69.79 48.53
6.13 148.45 4.94 11.8 7.01

umber s of medical field (Part II).
–CT All Medical Data

PM CMN PMN MS (%) Pre. (%) Rec. (%) RT (ms)

6.1 16.92 32.83 5.05 24.12 8.66 244.12
29. 34.86 80.10 8.96 35.57 12.47 65.69
103 34.29 258.04 5.41 12.72 9.59 4.66

16. 59.07 93.85 10.53 47.31 14.54 36665.26
34. 97.35 116.68 14.40 70.18 20.90 1496.17
54. 208.96 240.25 15.59 73.14 18.94 2805.57
39. 110.76 143.15 16.12 62.79 28.13 1968.58
20. 31.92 55.49 11.49 41.28 25.65 2908.89
25. 78.63 91.82 22.73 71.21 32.12 1226.33

57. 56.58 83 14.02 62.02 23.24 1608.8

58. 69.75 134.83 21.58 39.81 28.54 689.07
81. 18.6 110.78 5.14 12.19 7.03 532.98
Table 10
Descriptor matching results about Correct Match Number, Putative M
Datasets PD–T1

Matchers\Metrics CMN PMN MS (%) Pre. (%)

SIFT 3.40 10.00 2.33 24.50
SURF 55.60 80.20 17.57 72.03
ORB 11.80 211.30 2.56 5.27

SURF-PIIFD 37.00 61.20 11.43 55.87
SURF-RIFT 54.00 59.40 17.92 89.61
PC-FAST-RIFT 114.80 118.40 16.61 96.58
PC-BRISK-RIFT 26.20 34.10 15.91 76.67
TILDE-RIFT 4.80 15.40 7.68 27.02
SuperPoint-RIFT 73.50 76.80 28.97 95.45
LFnet-RIFT 55.2 69.1 17.05 79.52

SuperPoint 68.80 131.90 25.24 51.76
LFnet 14.1 116.7 4.35 11.88

Table 11
Descriptor matching results about Correct Match Number, Putative Match N
Datasets MRI–PET SPECT

Match-
ers\Metrics

CMN PMN MS (%) Pre. (%) Rec.
(%)

CMN

SIFT 0.90 12.60 0.45 5.16 1.08 0.00
SURF 0.00 20.60 0.00 0.00 0.00 0.60
ORB 3.40 438.30 0.42 0.78 1.00 0.90

SURF-PIIFD 0.40 22.40 0.12 2.46 0.38 0.80
SURF-RIFT 7.20 42.50 1.85 16.45 4.21 7.20
PC-FAST-RIFT 9.30 55.20 1.00 16.25 1.40 12.30
PC-BRISK-RIFT 5.90 38.00 2.23 14.82 6.14 7.50
TILDE-RIFT 3.30 22.00 2.90 14.14 11.82 3.10
SuperPoint-
RIFT

4.80 29.60 2.55 16.65 9.43 3.60

LFnet-RIFT 7.7 50.8 1.91 15.24 3.43 11.8

SuperPoint 0.70 42.80 0.36 1.54 1.30 1.40
LFnet 0.1 93 0.02 0.1 0.04 0.6
umber, Match Score, Precision, Recall metrics of 12 feature matchers on multimodal
PD-T2 T1–T2

(%) CMN PMN MS (%) Pre. (%) Rec.
(%)

CMN

38.90 44.90 24.64 86.62 43.62 4.09
4 81.90 103.20 23.21 80.90 32.02 77.45

148.50 310.40 23.90 49.57 39.57 15.64

0 77.40 93.50 22.02 82.71 30.58 75.64
0 62.00 67.10 18.04 92.39 24.97 68.09
2 118.60 122.70 16.94 96.05 19.74 158.36
5 25.90 33.00 17.26 76.91 33.17 36.00
7 21.10 22.70 29.24 92.26 40.69 5.27
0 77.50 80.30 28.87 96.66 34.67 95.91
6 78.3 83.4 22.62 93.88 28.66 68.64

8 161.90 197.50 54.95 80.51 67.04 114.73
84.6 164.6 24.52 50.88 31.01 17.18

, Match Score, Precision, Recall metrics of 12 feature matchers on multimodal dataset
Retina

N MS (%) Pre. (%) Rec. (%) CMN PMN MS (%) Pre. (%) Rec. (%)

0 0.00 0.00 0.00 35.55 70.82 3.94 21.54 5.71
30 0.18 2.06 0.38 16.55 112.91 0.99 9.49 1.66
.20 0.42 0.86 1.50 34.41 195.95 4.85 15.16 9.88

90 0.24 4.74 0.50 106.18 175.05 9.46 53.66 13.04
60 2.18 21.19 4.75 227.59 256.09 19.80 86.79 28.95
00 1.15 23.43 1.33 492.82 551.68 24.75 88.44 31.13
40 2.93 19.28 7.28 315.45 383.41 25.44 79.80 38.25
80 2.43 14.80 16.35 88.09 136.86 16.04 59.17 39.80
30 1.91 14.71 5.95 140.14 159.23 28.92 86.25 45.58

7 2.81 20.62 5.01 84.32 115.82 16.86 69.77 35.54

20 0.80 2.65 2.76 72.18 173.86 15.76 36.71 25.09
6 0.14 0.76 0.25 9.68 87.18 1.94 6.99 3.56
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Numb sets of remote sensing field (Part I).
–nigh Infrared-optical

N ) CMN PMN MS (%) Pre.
(%)

Rec. (%)

29 26.00 55.00 2.96 16.51 4.32
6 8.00 532.20 0.32 2.67 0.58
57 15.40 894.80 0.78 1.75 1.25

00 147.60 302.20 7.92 50.69 10.99
.71 157.00 313.60 7.85 53.63 11.57
.29 92.00 232.60 8.11 44.49 14.74
00 121.60 273.20 12.54 49.64 21.34
.00 98.80 218.00 10.44 48.90 17.84

.86 57.60 370.00 7.82 15.71 13.29
3 10.40 212.40 2.08 5.12 3.85

umbe ets of remote sensing field (part II).
l cross ll remote sensing data

PM MN PMN MS (%) Pre. (%) Rec. (%) RT (ms)

65. 4.67 39.21 1.21 21.83 2.11 846.55
216 3.83 261.86 0.80 11.81 1.54 349.72
924 4.79 833.21 1.92 4.16 3.00 9.53

188 95.45 251.83 10.50 71.15 15.63 4756.21
194 10.31 268.98 10.67 73.59 14.34 6168.90
121 23.31 178.38 11.31 65.79 18.30 4826.76

133 19.29 179.33 15.78 64.10 25.57 7240.91
74. 64.40 208.26 13.14 71.79 19.52 3860.86

369 6.10 458.64 6.82 17.35 10.29 1398.05
187 .52 168.45 1.70 4.36 3.14 548.35
Table 12
Descriptor matching results about Correct Match Number, Putative Match
Datasets UAV Cross-season Day

Match-
ers\Metrics

CMN PMN MS (%) Pre. (%) Rec.
(%)

CM

SIFT 1.25 16.75 0.17 16.07 0.44 31.
SURF 84.75 395.75 2.37 20.93 4.82 0.8
ORB 2.00 808.50 0.10 0.25 0.16 71.

SURF-RIFT 269.00 311.50 13.45 72.54 18.87 94.
PC-FAST-RIFT 257.50 293.00 13.02 76.53 19.22 194
PC-BRISK-RIFT 95.75 123.75 12.33 66.68 23.75 136
TILDE-RIFT 116.75 166.00 14.66 63.38 24.93 94.
SuperPoint-
RIFT

118.75 134.00 17.89 76.90 25.76 170

SuperPoint 15.50 188.00 2.39 9.83 3.93 124
LFnet 1.00 155.50 0.20 0.62 0.46 3.4

Table 13
Descriptor matching results about Correct Match Number, Putative Match N
Datasets Map-optical Optica

Match-
ers\Metrics

CMN PMN MS (%) Pre. (%) Rec. (%) CMN

SIFT 3.38 21.75 0.33 13.67 0.64 25.33
SURF 3.25 309.13 0.09 1.26 0.19 12.83
ORB 25.00 891.50 1.25 2.81 1.91 30.67

SURF-RIFT 210.25 258.63 10.51 80.22 14.31 126.33
PC-FAST-RIFT 194.50 235.00 9.73 81.71 14.08 131.17
PC-BRISK-
RIFT

143.75 193.00 11.32 73.11 17.45 69.33

TILDE-RIFT 135.63 192.25 14.96 70.79 22.56 78.67
SuperPoint-
RIFT

231.13 275.50 12.60 83.04 18.36 42.83

SuperPoint 83.25 663.38 4.52 12.57 6.97 51.50
LFnet 5.00 190.88 1.00 2.69 2.39 7.17
er, Match Score, Precision, Recall metrics of 10 feature matchers on multimodal data
t Depth-optical

PMN MS (%) Pre. (%) Rec. (%) CMN PMN MS (%) Pre. (%)Rec. (%

60.29 2.33 33.33 4.70 12.83 36.33 1.32 33.65 2.08
49.29 0.04 9.52 0.69 49.00 152.50 2.09 33.32 3.19
660.86 4.63 9.80 8.67 76.33 955.83 3.83 8.31 4.73

124.29 6.34 68.88 21.26 283.17 321.00 15.47 87.70 19.31
256.71 9.74 74.04 13.24 299.00 334.17 14.95 88.99 18.80
187.43 9.61 70.58 17.47 169.83 212.00 16.09 79.17 22.03
134.57 14.62 65.99 30.38 159.33 201.00 26.07 78.16 38.22
212.14 12.05 74.73 17.30 286.33 319.67 19.77 88.80 24.12

504.00 7.79 19.53 10.54 191.17 660.83 15.46 32.77 19.77
80.00 0.69 3.39 1.25 31.17 243.33 6.23 12.88 9.80

r, Match Score, Precision, Recall metrics of 10 feature matchers on multimodal datas
-temporal SAR-optical A

N MS (%) Pre. (%) Rec. (%) CMN PMN MS (%) Pre. (%) Rec. (%) C

17 1.26 31.67 2.18 1.00 16.67 0.12 5.90 0.28 1
.50 0.53 10.41 0.75 36.50 287.00 0.94 9.98 2.06 2
.50 1.53 3.35 2.03 5.50 707.83 0.28 0.69 0.40 3

.00 6.36 48.25 7.45 266.33 304.50 14.66 84.17 17.05 1

.17 6.56 49.41 7.80 253.00 285.00 13.60 85.70 17.11 2

.33 7.38 44.60 11.23 132.83 163.00 14.41 75.44 23.09 1

.00 11.11 46.18 14.68 127.33 169.67 16.03 69.32 26.20 1
67 5.66 40.53 10.95 153.67 177.67 15.10 83.27 24.84 1

.50 4.70 13.94 9.00 45.00 274.00 4.35 15.57 8.00 8

.33 1.43 4.75 3.51 1.33 120.00 0.27 0.63 0.50 8
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tch Nu atasets of computer vision field (Part I).

%) PMN MS (%) Pre. (%) Rec. (%)

123.00 2.10 27.40 7.47
359.00 1.26 10.61 2.02
731.67 3.14 8.60 3.82

166.00 6.58 48.68 10.94
176.67 5.67 52.12 8.73
131.17 4.65 35.19 12.49
178.67 10.32 53.79 28.86
217.50 11.52 62.61 18.82
94.00 8.93 44.61 18.06

523.00 11.54 23.72 20.32
224.17 4.97 10.72 9.33

ch Nu tasets of computer vision field (Part II).

Rec. (% MS (%) Pre. (%) Rec. (%) RT (ms)

1.78 69 10.32 51.76 15.76 1407.17
11.88 31 0.55 5.90 1.49 615.4
0.36 59 13.57 22.82 17.73 9.17

11.24 31 17.07 71.76 23.78 6646.36
14.33 84 17.83 73.00 23.33 9944.77
11.66 31 14.96 62.84 23.68 9334.33
16.85 55 23.81 66.51 37.67 13539.31
17.74 69 24.58 76.70 32.2 6474.79
19.79 33 22.52 68.17 38.59 4360.62

10.51 33 29.62 49.79 40.02 2298.28
1.77 71 15.14 27.58 24.5 556.83
Table 14
Descriptor matching results about Correct Match Number, Putative Ma
Datasets Visible–infrared

Matchers\Metrics CMN PMN MS (%) Pre. (

SIFT 1.50 36.70 0.42 12.35
SURF 0.10 28.50 0.02 0.17
ORB 1.60 164.40 0.36 0.77

SURF-RIFT 48.90 79.50 8.64 60.82
PC-FAST-RIFT 116.30 168.70 6.67 66.08
PC-BRISK-RIFT 46.80 88.90 6.53 47.95
TILDE-RIFT 20.30 49.40 7.70 41.79
SuperPoint-RIFT 47.90 70.70 10.39 67.19
LFnet-RIFT 46.90 76.60 9.39 58.40

SuperPoint 16.00 154.30 4.25 11.81
LFnet 0.90 56.20 0.18 1.42

Table 15
Descriptor matching results about Correct Match Number, Putative Mat
Datasets Day–night

Matchers\Metrics CMN PMN MS (%) Pre. (%)

SIFT 57.00 182.00 0.95 26.54
SURF 120.50 503.50 3.24 41.45
ORB 3.00 919.00 0.15 0.31

SURF-RIFT 114.50 156.00 5.73 41.49
PC-FAST-RIFT 193.00 242.50 9.65 44.06
PC-BRISK-RIFT 145.50 203.50 7.28 41.57
TILDE-RIFT 135.50 224.00 10.08 40.45
SuperPoint-RIFT 240.00 265.50 12.04 46.78
LFnet-RIFT 38.00 75.00 7.60 35.51

SuperPoint 120.00 778.50 6.00 15.47
LFnet 1.50 211.00 0.30 0.70
mber, Match Score, Precision, Recall metrics of 11 feature matchers on multimodal d
Visible-near infrared Cross-season

Rec. (%) CMN PMN MS (%) Pre. (%) Rec. (%) CMN

1.29 388.33 470.33 16.24 73.08 23.69 32.33
0.02 17.97 402.23 0.42 4.68 1.22 7.83
1.38 379.60 1004.03 21.40 35.26 27.70 47.33

16.91 459.17 503.17 23.28 84.18 30.22 86.67
8.03 501.53 552.03 25.08 83.44 32.63 91.83
12.63 360.27 432.77 20.82 76.58 31.14 43.67
23.69 493.50 551.20 33.56 81.07 46.70 89.17
17.02 541.77 576.00 33.54 86.84 41.91 140.33
18.79 156.77 178.93 31.35 80.50 51.78 44.67

8.04 734.37 957.10 44.19 71.44 57.82 114.33
0.34 118.23 246.17 23.65 42.37 37.89 24.83

mber, Match Score, Precision, Recall metrics of 11 feature matchers on multimodal da
image–paint All Vision Data

) CMN PMN MS (%) Pre. (%) Rec. (%) CMN PMN

4.00 135.00 0.10 2.96 0.21 244.43 320.
4.00 770.00 0.05 0.52 0.33 16.98 332.
3.00 991.00 0.15 0.30 0.29 238.71 795.

16.00 212.00 0.80 7.55 1.33 306.71 355.
23.00 191.00 1.15 12.04 2.66 350.39 407.
15.00 188.00 0.75 7.98 1.73 241.71 311.
13.00 244.00 0.56 5.33 1.32 323 383.
24.00 203.00 1.21 11.82 1.96 368.94 408.
2.00 77.00 0.40 2.60 1.82 112.61 141.

38.00 786.00 1.90 4.83 3.10 472.55 729.
1.00 268.00 0.20 0.37 0.91 75.69 203.
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PSNR is the ratio between the maximum power of a signal and the
power of noise that affects the fidelity of its representations. It is most
commonly used to measure the quality of reconstruction errors in image
evaluation. SSIM is often used to model image distortion and loss,
measuring the structural similarity between the warped source image
and the original fixed image. MI determines the degree of similarity
between the image intensity distribution in two images. Higher values
of these three metrics represent better registration results. We refer
the readers to [6,13,477] for more details. In our evaluation, we first
convert all images from RGB space (for single-channel images, we
repeat this channel into three to simulate RGB) into YCbCr, then use
the channel Y to calculate these three metrics.

Figs. 15 16 show the average results for the aforementioned six met-
rics for 12 state-of-the-art methods. As shown in Fig. 15, the advanced
resampling-based method MAGSAC++ obtains the best registration
accuracy in terms of distance-based metrics, followed by RANSAC,
nonparametric, and graph-based methods, because of their global ge-
ometrical or strict local graph-consistent constraints. For the relaxed
methods, LPM and GMS are limited in remote sensing, VIS–IR, and
image–paint image pairs due to their loose constraints and the dom-
inant outliers in putative match sets. mTopKRP is more robust because
of its enhanced outlier filtering rules. The learning-based method LMR
can also achieve satisfying registration results owing to its good mis-
match removal performance. However, the poor result for correct
match finding obviously leads to a large registration error when LFGC
is performed.

Fig. 16 shows that the difference among these methods is not
so remarkable because PSNR, SSIM, and MI are highly related to
the overlapping area between two images in the image registration
task, resulting in a large range among different datasets, particularly
if the values changed slightly along with the registration accuracy.
MAGSAC++ achieves the best results in SSIM and MI measurement.
Overall, these three metrics are less discriminative and objective than
the landmark-based metrics when measuring the registration accuracy
of general multimodal image pairs. Note that, in our early test, area-
based methods can only achieve promising registration performance in
medical data (except retina image pairs), and they require significant
time for an image pair with large size. Thus we ignore the area-based
methods for our general test of MMIM in medical, remote sensing and
computer vision researches. In addition, for some types of modalities,
such as MRI–PET, SPECT–CT, Cross Season in remote sensing, even the
feature matching results are not so satisfactory, we can still find that
the false matches can keep weak consistence with inliers, allowing the
transformation models to be accurately estimated thus obtaining good
registration results as the RMSE MAE and MEE shown in Fig. 15.

5. Applications

In this part, we will briefly introduce several typical applications
based on MMIM, including image fusion, change detection, image local-
ization, target recognition, and tracking. This part would deliver more
insightful understanding for the significance of MMIM or registration.

5.1. Image fusion

Image fusion is one of the most important applications of image
registration technology [13,478]. Formally, image fusion extracts the
most meaningful information from images acquired by different sensors
or under different shooting settings, and combines the information to
generate a single image, which contains more abundant information
and is more conducive to subsequent applications [13]. However,
different sensors or shooting settings may cause some degradation,
such as different resolutions and motion blur, which will make the
captured images not aligned. Therefore, in almost all current image
fusion methods, the source images are already strictly registered by
default, which is also a prerequisite for subsequent feature extraction,
54
fusion, and reconstruction. According to the sensor or shooting settings,
image fusion can be divided into multiple scenarios, including IR and
visible image fusion, medical image fusion, pansharpening, multiexpo-
sure image fusion, and multifocus image fusion. We introduce these
fusion scenarios and provide representative works.

The purpose of IR and visible image fusion is to preserve the
significant contrast in IR images and the texture in visible images
to generate a single image with significant contrast and rich texture
details. Ma et al. [479] proposed an end-to-end model called Fusion-
GAN, which generates a fused image with a dominant IR intensity
and an additional visible gradient on the basis of GAN. This is further
improved in [480] by preserving better details. Subsequently, they
introduced a dual discriminator to exploit the structure information in
the source images [481]. Zhang et al. [482] adopted the generative
adversarial network to measure the effectiveness of information at
the pixel level, so as to adaptively guiding the model to produce the
full-focused image. Medical image fusion is dedicated to combining
the body’s metabolic function information and organizational structure
information to generate a composite image that is more conducive to
the diagnosis of lesions. Hou et al. [483] designed a CT and MRI fusion
scheme based on CNNs and a dual-channel spiking cortical model,
which can preserve the salient features and details of the source images.
Pansharpening aims to fuse a low-resolution multispectral image and
a high-resolution panchromatic image to produce a high-resolution
multispectral image. Yang et al. [484] proposed the PanNet, in which
the network is trained in the high-pass filtering domain rather than
the image domain. They added upsampled multispectral images to
the residuals learned by the network to generate the final results to
strengthen the preservation of the spatial structure. Ma et al. [485]
used GANs to realize pansharpening without supervision for the first
time. Their model consists of a generator, a spectral discriminator, and
a spatial discriminator, which work together to preserve spectral and
spatial information.

The above three scenarios are all fusions of images captured by
different sensors. For fusing images captured under different shooting
settings, the two most typical scenarios are multiexposure image fusion
and multifocus image fusion. Multiexposure image fusion involves
fusing an overexposed image and an underexposed image to generate
a properly illuminated image. Some methods can produce promising
results. For example, a ghost-free multiexposure image fusion technique
using the dense SIFT descriptor and guided filter was proposed by
Hayat et al. [486], which can produce high-quality images without
the ghosting artifact by using ordinary cameras. Prabhakar et al. [487]
proposed an unsupervised deep learning framework that utilizes a no-
reference quality metric as a loss function to assess the quality of
exposure and can produce satisfactory fusion results. Multifocus image
fusion as an image enhancement method can fuse images with different
focused regions to obtain a single full-clear image. Innovatively, Guo
et al. [488] proposed to use the conditional GAN for multifocus image
fusion. Unlike these methods for a single fusion scene, some works
can realize multiple fusion tasks uniformly. Zhang et al. [489] unified
multiple image fusion tasks into the extraction and reconstruction of
intensity information and gradient information, and designed a loss
function in a unified form, which can produce results with good visual
perception. Similarly, Xu et al. [490] used continuous learning tech-
nology to maintain the memory capacity of the network, thus realizing
unified image fusion.

All the above methods perform feature extraction in alignment,
followed by feature fusion and image reconstruction. Therefore, the
spatial registration directly determines the fusion performance. In this
regard, research on high-accuracy image registration technology is of

great significance to the field of image fusion.
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Fig. 9. Qualitative descriptor matching results of 10 methods on typical multimodal image pairs in the remote sensing research area. (blue = correct matches with threshold of 3
pixels, green = correct matches with threshold of 5 pixels, red = incorrect matches). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 10. Qualitative descriptor matching results of 11 methods on typical multimodal image pairs in the computer vision research area. (blue = correct matches with threshold of
3 pixels, green = correct matches with threshold of 5 pixels, red = incorrect matches). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. Qualitative results of 12 mismatch removal algorithms on typical medical multimodal image pairs. For visibility, in each image pairs, at most 100 randomly selected
matches are presented, and the true negatives are not shown. (blue = true positive, green = false negative, red = false positive). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
5.2. Change detection

Change detection, which refers to determining the discrepancy be-
tween image pairs of the same scene taken at different time, has
aroused increasing interest in computer vision, medical, and remote
sensing [491]. Generally, change detection is widely and successfully
applied for environment monitoring [492], damage assessment [493],
and so on.

In remote sensing applications over the past decade, an increasing
number of change detection techniques have been proposed for en-
vironment monitoring under an all-around observation of the earth’s
surface. Existing methods can be roughly classified into two categories
based on whether the used images are of the same modality: i.e., single-
sensor-based and multisensor-based change detection. Different shoot
times (e.g., day and night, cross-season) and different sensors (e.g.,
optical and SAR) may induce differences in imaging, such as color and
illumination variations and different resolutions. These variances may
lead to great challenges in registering captured image pairs. Hence,
high-accuracy registration of multitemporal or multisensor images is
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urgently required to avoid generating significantly spurious change
detection results. In the following, we will deliver representative works
in response to the two aforementioned.categories

The first type of change detection is typically performed on the
image series of a single sensor. In accordance with the used unit
for analysis, this type of change detection it can be further divided
into pixel-based change detection (PBCD) and object-based change
detection (OBCD). The former utilizes the pixel as the basic unit of
image analysis whose spectral characteristics are used to detect and
measure changes almost without taking the spatial context into con-
sideration. In general, statistical operations are applied to gauge the
individual pixel. Celik et al. [494] applied the PCA technique to map
local neighborhoods in different images to a higher-dimensional space,
which is performed on several defined non-overlapping image blocks.
Quin et al. [495] proposed a change detection method called MIMOSA,
which was especially designed for SAR time series. Wang et al. [496]
introduced an unsupervised change detection approach for multitem-
poral SAR images by means of a triplet Markov field. In contrast to
PBCD, OBCD methods aim to extract objects from source images by
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Fig. 12. Qualitative results of 12 mismatch removal algorithms on typical remote sensing multimodal image pairs. For visibility, in each image pair, at most 100 randomly selected
matches are presented, and the true negatives are not shown. (blue = true positive, green = false negative, red = false positive). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
using image segmentation and other feature extraction algorithms, then
determine the changes between corresponding objects. For example,
Miller et al. [497] presented an OBCD algorithm to detect the changes
of significant blobs (i.e., objects) between a pair of gray-level images.
Another method introduced in et al. [498] performed change detection
by using correlation image analysis and image segmentation.

As a result of the significant breakthrough of the imaging sen-
sors, images captured by different sensors have stimulated increasing
research in related applications, including change detection. Existing
approaches of this type can be roughly divided into three categories:
difference map-based, deep learning-based, and classification-based ap-
proaches. The core idea of difference map-based methods is to pro-
duce difference maps under a thresholding strategy, then discover the
changed regions on these maps. Alberga et al. [499] introduced a sim-
ilarity measure that has been merely applied to image co-registration
to compute the difference maps for multisensor remote sensing images.
Mercier et al. [500] proposed a semi-supervised method based on the
assumption that some dependence may commonly exist in these two
images in unchanged areas. The dependence is modeled by quantile
regression according to the copula theory. Meanwhile, the symmet-
rical Kullback–Leibler distance is used to acquire the change indices.
Prendes et al. [501] presented another semi-supervised method. They
modeled the objects contained in an analysis window by using mixtures
of distributions. Subsequently in [502], they introduced a Bayesian
nonparametric model based on their previous work, which success-
fully overcomes the drawbacks of demanding a prior knowledge of
the number of objects in the analysis window. Deep learning-based
methods aim to learn feature maps by using deep neural networks,
thus guiding the change detection with these deep features for better
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performance. For instance, a multispatial-resolution change detection
framework was proposed by Zhang et al. [503], which constructs a
mapping neural network to exploit the inner relationships between
multisensor images. Zhao et al. [504] introduced an approximately
symmetric deep neural network to detect changes between multisensor
images with two sides containing the same number of coupled layers.
As for classification-based approaches, the common strategy is post-
classification comparison, which is capable of minimizing the influence
of different sensors. A more typical method would be [505], in which
Mubea et al. applied maximum likelihood and support vector machine
to classify remote sensing images. Land-use change monitoring was
achieved by comparing the change between two corresponding years.

As a prerequisite procedure, image registration for multitemporal
and/or multisensor images plays a significant role in image-based
change detection. More emphasis on research into MMIR is necessary
to the field of change detection.

5.3. Image localization

Image localization aims to recognize a known location by com-
paring the current place image captured by the visual sensor with
previous images. Image localization mainly consists of the image pro-
cessing module, the mapping framework, and the belief generation
module [506]. With the changes in the environment (e.g., season,
weather, lighting), and the adjustment of the shooting angle, improving
the accuracy of image localization is an essential but challenging
issue [507]. Reliable registration is the cornerstone of alleviating envi-
ronmental and seasonal changes, and for long-term localization [508].
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Fig. 13. Qualitative results of 12 mismatch removal algorithms on typical multimodal image pairs in the field of computer vision. For visibility, in each image pair, at most 100
randomly selected matches are presented, and the true negatives are not shown. (blue = true positive, green = false negative, red = false positive). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Next, we will provide a brief description of some of the representative
image localization methods.

To enable robots to create maps of the environment while simul-
taneously using those maps to work out where they are (localize),
Milford et al. [24] proposed a method called SeqSLAM, which is used
to visualize navigation under changing conditions. They calculated the
best candidate matching location within every local navigation se-
quence, and localization is achieved by recognizing coherent sequences
of these local best matches, thus adapting to environmental changes.
To reduce the effects of various seasonal differences and to handle
revisits of places and loop closures, an approach to visual localization
of mobile robots in outdoor environments was presented by Naseer
et al. [7]. They formulated image matching as a minimum cost flow
issue in a data association graph to efficiently use sequence information
and deal with non-matching image sequences resulting from temporal
occlusions or from visiting new places. On this basis, they introduced
a semi-dense image description based on HOG features and global
descriptors from deep CNNs for robust localization [509]. They also
utilized image sequences to address the issue of visual localization
under massive perceptual changes. Schönberger et al. [510] devised an
approach based on a joint 3D geometric and semantic understanding
of the world, which can be adapted to some extreme situations. They
leveraged a generative model for descriptor learning and trained with
semantic scene completion as an auxiliary task. In addition to outdoor
58
scene localization, Taira et al. [511] presented InLoc for indoor visual
localization. With three steps, namely, efficient retrieval of candidate
poses, pose estimation using dense matching, and pose verification
by virtual view synthesis, InLoc can alleviate indoor localization chal-
lenges such as lack of texture, significant changes in viewpoint, scene
layout, and occluders. Liu et al. [512] proposed a method that can
quickly and precisely pinpoint the location and perspective of image
shots according to a prestored large-scale 3D point-cloud map. Their
proposed method utilizes global contextual information exhibited both
within the query image and among all the 3D points in the map, which
takes account of not only visual similarities between individual 2D–3D
matches but also their global compatibilities among all matching pairs.

In conclusion, image matching plays a pivotal role in different
localization scenarios, and high-precision registration results commonly
lead to reliable localization. Therefore, the study of excellent matching
techniques is of great importance in the field of image localization.

5.4. Target recognition and tracking

The purpose of recognition is to interpret the scene or to distinguish
different objects from an image, and the goal of tracking is to detect
moving objects and to pursue the objectives of interest by estimating
their motion parameters [513]. In addition, automatic target recogni-
tion (ATR) is a technique to identify objects or targets by comparing
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mages acquired in real time with data stored in the database [458].
arget recognition and tracking are commonly used in many practical
cenarios, such as video surveillance and traffic control [514,515].
s for the ATR, it is typically used in disposable applications that
an enhance missile guidance capabilities. In multisource image ATR
asks, different source images need to be registered given the apparent
ifferences in the images captured by various sensors that prevent
he target from being aligned, thus affecting the accuracy of target
ecognition [516]. In target recognition and tracking missions, image
atching is a crucial step to compensate for background motion [517].

ubsequently, we introduce typical target recognition and tracking
ethods, and the application of image matching therein.

On the basis of the assumption that visible images of the target
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re available as a priori, Cheng et al. [458] proposed an algorithm for m
bject recognition between IR and visible images under various con-
itions. Edge detection and binary template matching were exploited
o initialize IR and visible images, followed by a local fuzzy thresh-
ld to recognize highly similar objects. Yoon et al. [518] presented
method for automatic airborne target recognition and tracking in

orward-looking IR images in backgrounds. They employed an image
egmentation and merging technique to detect reliable targets from
omplex environments, followed by training a Bayesian classifier to
omplete the classification using normalized inertial matrix features.
ventually, they combined joint detection and classification with the
oint integrated highest probability to achieve multiobject tracking in
lutter. To detect and identify moving targets from multiangle surveil-
ance videos, Zhou et al. [519] investigated a multiview foreground

atching model based on HOG detection and system clustering using
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Fig. 15. Registration results for average RMSE, MSE, MEE metrics of 12 representative mismatch removal methods on our constructed 18 multimodal image datasets. A lower
value is better.
background subtraction, HOG feature detection, and least squares of
deviations in system clustering. Given the inlier points chosen by
RANSAC, excessively concentrating on the image and on the feature
points in the object regions may hinder accurate registration and affect
background compensation. Xu et al. [520] devised a unique framework
for moving object detection, in which feature point selection and regis-
tration accuracy prediction are utilized to boost detection accuracy. A
practical approach for detecting and tracking multiple moving objects
from a video sequence was proposed by Hu et al. [521]. In this method,
the authors addressed the challenge of mixing camera motion and
object movement in moving object detection and tracking. They used a
Kalman filter based on the center of gravity of a moving object region
in the minimum bounding box for tracking multiple moving objects.

The above-mentioned methods are just the tip of the iceberg in
the field of target recognition and tracking. Devoting efforts in MMIM
to achieve advanced performance of this application is significant for
researchers.

6. Conclusion and feature trends

Image matching or registration for multimodal cases has played a
critical role in various fields, including medical diagnosis, remote sens-
ing (change detection, map updating, data fusion), and computer vision
(image fusion, target recognition and tracking, image localization, or
place recognition). Over the past decades, an increasing number and
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diversity of techniques have been proposed to improve performance.
To provide a significant reference and understanding of MMIM for
researchers and engineers in related areas, we provide a comprehensive
and systematic review of the methods and their applications, which
covers the typical cases in medical, remote sensing, and computer
vision research. In addition, to perform experimental evaluations and
provide a public standard for future research, we provide a complete
database that includes 18 modality pairs (164 image pairs) together
with their ground truths, which we collected and annotated. To bet-
ter understand the significance of this problem, we introduce several
typical applications related to MMIM.

In spite of the great progress that has been achieved in both theory
and practice, MMIM remains an open problem with the following
challenges for future developments:

• The insufficient and unavailable image data of different modali-
ties are a significant limitation in general MMIM tasks.

• Area-based methods are largely limited by the small overlap
and large deformation between two images. Computational con-
sumption is another weakness due to their iterative optimization
strategy, particularly for high-resolution images.

• Feature-based framework still greatly suffers from nonlinear in-
tensity variance in feature detection and description, which would
create few or even no accurate correspondences in some scenar-
ios.
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Fig. 16. Registration results for average PSNR, SSIM, MI metrics of 12 representative mismatch removal methods on our constructed 18 multimodal image datasets. A higher value
is better.
• Learning from images for transformation parameter estimation is
typically limited by complex geometrical deformations and image
content.

• The use of only a local descriptor to construct putative match set
would create a high number and ratio of mismatches. Therefore,
an accurate, robust, and efficient mismatch removal method is
required to achieve improved classification performance between
inliers and outliers from a putative match set, thus maintaining
accurate estimation of transformation parameters or deformation
fields.

• A general matching method that can handle all types of multi-
modal images is still an open problem for both handcrafted and
deep methods.

• Existing methods usually perform image registration and subse-
quent task in a successive manner. A worthwhile task is to attempt
to integrate the matching problem into a high-level task for
combinational optimization [522,523] or to directly perform the
final task and bypass the matching or registration requirement,
such as from unaligned images to image fusion.
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