SAM-TTT: Segment Anything Model via Reverse Parameter
Configuration and Test-Time Training for Camouflaged Object
Detection

Zhenni Yu
College of Computer Science and Artificial Intelligence,
Wenzhou University
Wenzhou, Zhejiang, China
College of Computer Science and Technology, Tongji
University
Shanghai, China
zhenn_yu@163.com

Guobao Xiao*
College of Computer Science and Technology, Tongji
University
Shanghai, China
x-gb@163.com

Abstract

This paper introduces a new Segment Anything Model (SAM) that
leverages reverse parameter configuration and test-time training to
enhance its performance on Camouflaged Object Detection (COD),
named SAM-TTT. While most existing SAM-based COD models
primarily focus on enhancing SAM by extracting favorable fea-
tures and amplifying its advantageous parameters, a crucial gap is
identified: insufficient attention to adverse parameters that impair
SAM'’s semantic understanding in downstream tasks. To tackle this
issue, the Reverse SAM Parameter Configuration Module is pro-
posed to effectively mitigate the influence of adverse parameters in
a train-free manner by configuring SAM’s parameters. Building on
this foundation, the T-Visioner Module is unveiled to strengthen
advantageous parameters by integrating Test-Time Training layers,
originally developed for language tasks, into vision tasks. Test-Time
Training layers represent a new class of sequence modeling layers
characterized by linear complexity and an expressive hidden state.
By integrating two modules, SAM-TTT simultaneously suppresses
adverse parameters while reinforcing advantageous ones, signifi-
cantly improving SAM’s semantic understanding in COD task. Our
experimental results on various COD benchmarks demonstrate
that the proposed approach achieves state-of-the-art performance,
setting a new benchmark in the field.
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Figure 1: Conceptual Diagram of SAM-TTT from the Perspective of
Effect Distance. The roles of the R-SAMPC and TVM. R-SAMPC weak-
ens the adverse and advantageous parameters, while TVM strength-
ens the advantageous parameters.
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1 Introduction

Segment Anything Model (SAM) [20] is undergoing rapid develop-
ment. Its impressive zero-shot capabilities enable good results in
various downstream tasks while also saving training costs, leading
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Figure 2: A comparative analysis of solutions to mitigate the se-
mantic deficiency encountered when applying SAM to COD.

(c) SAM-Adapter

to widespread utilization and exploration. Currently, SAM faces
the issue of semantic deficiency as it progresses towards down-
stream tasks [27]. In the specific downstream task of Camouflaged
Object Detection (COD), semantic deficiency issues manifest in
the segmentation masks not aligning with the intended seman-
tics [17]. This phenomenon suggests that SAM produces object-
biased fine-grained semantic responses in COD [3]. The underlying
cause is SAM’s zero-shot capabilities stem from the SA-1B dataset.
The SA-1B dataset exhibits a domain gap compared to the COD
dataset. Several studies have been conducted to address this issue.
SAM-COD [3] produces a preliminary mask using additional net-
work, which contains an initial understanding, to correct the above
errors by calculating the semantic entropy. SAM-Adapter [4] uti-
lizes adapter technology to integrates domain knowledge to SAM.
Aware of the limitations of RGB modality, DSAM [39] adds depth
information to correct the semantic missing. However, all these
methods require the integration of additional coding modules to
fulfill their objectives, which adds complexity to their implementa-
tion. A deeper underlying reason is that most researchers focus on
introducing semantic information to compensate for its absence,
while few pay attention to the adverse parameters within SAM that
contribute to the generation of erroneous semantic information.
To solve these problems, a new SAM-based model is proposed
for COD, named SAM-TTT. SAM-TTT integrates the Reverse SAM
Parameter Configuration Module (R-SAMPC) and T-vision Mod-
ule (TVM) to strengthen SAM’s performance on COD. SAM-TTT
focuses on the impact of parameters in SAM and introduces a con-
ceptual metric called Effect Distance, which represents the quality
of parameters—it increases as beneficial parameters are enhanced
and detrimental ones are suppressed. SAM-TTT configures the pa-
rameters of SAM in a new way of widening the Effect Distance,
shown in Figure 1. This concept derives from the unique work-
ing mechanism of R-SAMPC. Unlike existing approaches that use
additional coding modules to introduce semantic information, as
illustrated in (a), (b), (c) of Figure 2, R-SAMPC solves the problem in
a train-free way, as shown in (d) of Figure 2. It is through a designed
randomly initialized convolution module that does not update to
loosen the constraints on the parameters, ultimately reducing the
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impact of adverse parameters in SAM for COD. R-SAMPC config-
ures the parameters in this novel way and mitigates the semantic
deficiency caused by adverse parameters. It’s used during train-
ing but not during inference. R-SAMPC focuses on weakening the
parameters, which is contrary to the previous approaches that em-
phasized enhancing the parameters; thus, it is named “Reverse".
From another perspective, R-SAMPC is viewed as a random mask
at the parameter level, corresponding to random initialization. The
random mask is able to suppress strong responses [21]. Chen et
al. [2] diverted the model’s attention across the entire object by
partially occluding the labeled regions, rather than focusing on the
most distinctive parts. R-SAMPC disturbs the part of the model that
is highly responsive in a train-free way and forces the model to
focus on the whole. R-SAMPC addresses the semantic deficiency is-
sues caused by SAM in COD by weakening the adverse parameters
in a train-free manner.

Furthermore, R-SAMPC introduces a certain level of disruption
for advantageous parameters. TVM is proposed to extract favorable
features to compensate for this interference. TVM adopts TTT-
Linear, an instantiation of the TTT layer [32]. TTT is an RNN layer
with linear complexity and a highly expressive hidden state. TVM
incorporates TTT into computer vision to extract advantageous
features. TTT lets the hidden state itself be a weight. This approach
breaks the restriction that their representation in long context is
limited by the expressive power of hidden states [32].

SAM-TTT proposes R-SAMPC to mitigate the impact of adverse
factors and designs TVM to extract advantageous factors from the
interference caused by R-SAMPC. Because the two modules in
the serial structure will have contradictory effects (weakening and
strengthening) to cancel out the effect. In order to fuse the functions
of the two modules, SAM-TTT is designed as a structure of first
parallel and then fusion. Unlike the serial structure, two modules do
not interfere with each other in the parallel structure. Finally, in the
fusion stage, the function of the two modules is combined. Dilated
and grouped convolutions are employed to effectively capture multi-
scale contextual information, enabling more precise fusion. Overall,
SAM-TTT configures the parameters of SAM by broadening the
Effect Distance between advantageous and adverse parameters in
the model, partially addressing the semantic deficiency in SAM
used for COD. Our contributions are summarized as follows:

e SAM-TTT is proposed for COD. SAM-TTT is a new SAM-
based model that is the first to focus on expanding the Effect
Distance between advantageous and adverse parameters,
addressing the issue of semantic deficiency when applying
SAM to COD.

e Two efficient designs are proposed in SAM-TTT: R-SAMPC
and TVM. R-SAMPC is a SAM parameter configuration mod-
ule that mitigates the effects of adverse parameters in SAM
in a train-free way. TVM extracts advantageous parame-
ters to compensate for the parameter interference caused by
R-SAMPC .

o The performance of SAM-TTT is verified on COD benchmark
datasets. SAM-TTT outperforms the existing SOTA methods.
It can be concluded that SAM-TTT reaches the cutting-edge
in this domain.
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Figure 3: Overview of our SAM-TTT framework: the Reverse SAM Parameter Configuration Module (R-SAMPC) and the T-vision Module
(TVM). In the parallel phase, R-SAMPC and TVM operate independently, while in the fusion phase, the effectiveness of both modules is

integrated.

2 Related Work
2.1 Camouflaged Object Detection

In nature, animals use camouflage as a defense strategy to evade
predators [5]. COD [9, 37] is the process of identifying and seg-
menting camouflaged objects that blend into their surroundings.
Many studies tackle this problem from multiple perspectives. They
focus on gradient analysis [16], proactive template learning [1],
boundary detection [23, 31, 33, 44], depth cues [24, 39], zoom-out
strategies [29], predation techniques [8, 18], and other related ap-
proaches [38, 41]. Today’s cutting-edge methods continue to explore
these aspects more deeply. FSEL [34] highlights that previous meth-
ods overlook critical information found between high-frequency
and low-frequency ranges. It integrates both global frequency and
local spatial features to improve the detection of camouflaged ob-
jects. ZoomNeXt [30] mimics human behavior (i.e., zooming in
and out) when observing vague images and videos. RISNet [36]
extends classic COD to agricultural domains. It employs multiscale
receptive fields and integrates depth features to capture information
about camouflage crops of varying sizes and spatial locations. It
grounds the COD task in agricultural application. Due to the huge
human effort required by the labels required for full supervision,
some semi-supervised methods developed. Chen et al. [2] proposed
a novel point-based learning paradigm for the challenging COD
task. GenSAM [13] reasons visual prompts based on the seman-
tic information from a generic text prompt of cross-modal large
language mode.

2.2 Camouflaged Object Detection based SAM

As a novel foundation model, SAM is trained on a vast dataset and
demonstrates impressive zero-shot capabilities. However, due to
the domain gap between the data set trained by SAM and the data
set of COD, the accuracy of SAM is inevitably reduced when it is
applied to the field of COD [17]. Similarly, Tang et al. [35] directly
studied COD and highlighted that SAM performs suboptimally on
the COD task. One of the more specific embodiments is the lack of
segmentation semantics [3]. This makes the internal segmentation
of the camouflage target incomplete. He et al. [12] used sparse anno-
tations from SAM as guidance for mask segmentation during model
training. SAM-Adapter [4] integrates domain-specific information
or visual prompts into the segmentation network using straightfor-
ward yet effective adapters. DSAM [39] refines the mask generated
by SAM using depth cues to give semantic cues. SAM-COD [3]
uses masks generated by an auxiliary network, which contain the
initial semantics, to correct the masks predicted by SAM. COMPro-
mpter [43] employs a mixed prompt approach, integrating both box
prompts and boundary prompts to deliver more reliable semantic
information. However, this method depends on the integration of
an external auxiliary network or modules to tackle the challenge
of internal semantic deficiency. While this approach can enhance
performance, it also introduces additional parameters and compu-
tational complexity, which may impact efficiency. And it does not
solve the problem of missing semantics of SAM applied to COD
from the root, SAM itself.
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3 Methodology

3.1 Overall Architecture

SAM-TTT consists of the Reverse SAM Parameter Configuration
Module (R-SAMPC) and the T-visioner Module (TVM), shown in
Figure 3. The image embedding is derived from the frozen image
encoder of SAM. It possesses strong zero-shot capabilities, but it
also contains knowledge that may not align with COD. To address
this, SAM-TTT is proposed. It actively weakens knowledge that is
adverse for COD and strengths knowledge that is advantageous.
The network is structured with an initial parallel design followed
by a fusion stage, aiming to maximize the distance between advan-
tageous and adverse parameters. In the parallel phase, R-SAMPC
and TVM act independently and do not interfere with each other,
avoiding the possible effect cancellation of the weakening and the
enhancing effects. In the fusion phase, the mix prompt method of
COMPrompter is adopted. Features from R-SAMPC and TVM are
fused into the hybrid prompts to guide the mask decoder. The issue
of semantic deficiency of SAM applied to COD is alleviated.

3.2 Reverse SAM Parameter Configuration
Module

The Reverse SAM Parameter Configuration Module (R-SAMPC)
is designed to configure the parameters of SAM in a manner that
increases the distance between adverse and advantageous features.
In essence, R-SAMPC is a convolutional module that does not up-
date parameters, functioning as a train-free method. It weakens
the parameters in SAM that are not conducive to COD task, and
obviously alleviates the lack of semantics of SAM applied to COD.
Formally, this module can also be seen as a dropout, which only
participates during training and not during inference. Traditional
dropout either zeros out neurons or adds Gaussian noise. Unlike
traditional dropout, R-SAMPC consists of a series of convolutional
layers, Batch Normalization, and ReLU activation. R-SAMPC is only
initialized during training and its parameters are not updated. So
this module is trained in a train-free manner. Through R-SAMPC,
image embedding disturbs the original parameters to a certain
extent. R-SAMPC (¥) is expressed as follows:

F = CIR(SI(CIp(emy))) (1)

where CIp represents channel interaction using a 1x1 convolution
with BatchNorm and ReLU, which doubles the number of channels.
SI denotes spatial interaction using the four layers of 3x3 convolu-
tion with BatchNorm and ReLU. CI represents channel interaction
using a 1x1 convolution with BatchNorm, which reduces the num-
ber of channels to one-half of the original. em; denotes embedding
from image encoder. The function of CIp and CIy is to facilitate
communication of the image embedding across the channel dimen-
sion. SI enables simple communication over the spatial dimension.
The simple convolutional combination in R-SAMPC is designed to
introduce noise, with the aim of directly reducing the influence of
adverse parameters in SAM. From this point of view, R-SAMPC
can be seen as a mask for parameters. While previous works ap-
ply occlusion to the prediction mask [3], additional modules will
be used to map the occlusion on the mask level to the parameter
level. Other methods use the auxiliary network to correct mistakes
(Figure 2 (a), (b), (c)). Thus, R-SAMPC adds noise more directly and
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does not require additional subsequent computations (Figure 2 (d)).
From another point of view, adding random masks can force the
model to focus on the overall objective by shifting its attention
away from the highest parts [2]. Our R-SAMPC is exactly a para-
metric manifestation of this phenomenon. R-SAMPC is applied to
routel in the parallel phase participating in SAM-TTT.

3.3 T-visioner Module

R-SAMPC weakens knowledge in image embedding that is detri-
mental to COD. At the same time, the knowledge that it benefits
COD is also weakened inevitably. So, in another route in SAM-TTT,
TVM is designed to emphasize the knowledge that SAM is beneficial
for COD. Self-attention excels at handling long-range dependen-
cies but comes with quadratic complexity. In contrast, traditional
RNN layers have linear complexity, though their ability to model
long-term context is constrained by the limited expressive capacity
of their hidden states. Test-Time Training (TTT) [32] layers solves
this problem. The core concept is to treat the hidden state as a
machine learning model. An instantiations of TTT is introduced,
called TTT-linear, into Route2 in the parallel phase to reinforce
dominant features. The challenge that needs to be overcome is how
to bring TTT, which is an RNN layer, to the field of computer vision.
As shown in Figure 3, the usage of DWT [11] in COMPrompter is
retained by us. DWT primarily captures diagonal high-frequency
regions in an image, highlighting edges and subtle variations. DWT
first extracts the high-frequency components of the image embed-
ding and then adjusts the feature dimensions to comply with the
requirements of the RNN layer. The prosess is as followed:

reshape : BXCXW xH — BXx (W xH)xC 2)

Additionally, a positional encoding is generated . Its contents are
integers from 0 to W X H - 1. The dimensions of it is as followed:

Position encoding : 1 X (W X H — 1) (3)
After TTT-Liner, the shape will change the original dimension.
reshape : BX (WX H)XC — BXCXW xH 4)

The role of TVM is to compensate for the interference caused by
R-SAMPC on the advantageous parameters.

4 Experiments
4.1 Datatset

Experiments are conducted on three widely used datasets, namely
CAMO [22], COD10K [8], and NC4K [26]. This aims to evaluate the
impact of SAM-TTT on the task of COD. CAMO contains a total
of 1250 images, which are randomly divided into a training set of
1000 images and a test set of 250 images. COD10K includes 5066
images, with 3040 used for training and 2026 for testing. NC4K is
a relatively large dataset, consisting of 4121 images in total. It is
utilized as a test set in experiments to assess the generalization
capability of SAM-TTT. Following Fan et al. [8], our study adopts
that the dataset is composed of the train datasets of COD10K and
CAMO, which are 3040 images and 1000 images, respectively. The
remaining images of COD10K and CAMO and the entire NC4K
dataset are used as the test dataset.
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Table 1: Quantitative results on three different datasets of CAMO, COD10K, and NC4K. 7 indicates the higher the score the
better and | indicates the lower the score the better. The highest and second-highest scores are bolded, while the third score is
underlined.

SINet Zoo Seg DG MSC Hit PR RIS Camo SAMA D COMPr
Dataset Metric V2 mNet MaR Net AFNet Net Net Net Focus FSEL PRBE SAM dapter SAM ompter Ours

2022 2022 2023 2023 2023 2023 2024 2024 2024 2024 2024 2023 2023 2024 2024
(8] [29] [18] [16] [25] [14] [15] ([36] [19] [34] [40] [20] [4]  [39] [43]

F;’ T 0.743 0.752 0.742 0.769 0.828 0.801 0.831 0.827 0.842 0.851 0.837 0.606 0.765 0.794 0.819 0.838

CAMO SaT 0820 0820 0.815 0.839 0.873 0.844 0.872 0.870 0.873 0.885 0.876 0.684 0.847 0.832 0.853 0.868
Eg T 0.882 0.892 0.872 0.901 0.929 0.902 0.922 0.922 - 0.942 - 0.687 0.873 0913 0919 0.935
1 0.070 0.066 0.071 0.057 0.046 0.057 0.050 0.050 0.043 0.040 0.045 0.132 0.070 0.061 0.054 0.045

F® 1T 0.680 0.729 0.724 0.693 0.775 0.798 0.803 0.802 0.802 0.805 0.793 0.701 0.801 0.760 0.779 0.805

COD S/Z, T 0.815 0.838 0.833 0.822 0.865 0.868 0.873 0.873 0.873 0.877 0.867 0.783 0.883 0.846 0.861 0.874
10K Ey T 0.887 0.911 0.895 0.896 0.927 0.932 0.935 0.930 - 0.938 - 0.798 0.918 0.921 0.933 0.942

M| 0.037 0.029 0.033 0.033 0.024 0.024 0.025 0.028 0.021 0.023 0.021 0.049 0.025 0.033 0.026  0.027

FE’ T 0.770 0.784 0.781 0.784 0.839 0.825 0.832 0.823 0.853 0.836 0.845 0.696 - 0.826 0.840  0.837

NC4Kk SeT 0847 0.853 0.841 0.857 0.887 0.870 0.885 0.879 0.889 0.887 0.887 0.767 - 0.871 0.880 0.884
Eg T 0.903 0.912 0.905 0.911 0.935 0.921 0.935 0.927 - 0.940 - 0.776 - 0932  0.935 0.943

M| 0048 0.043 0.046 0.042 0.032 0.039 0.029 0.033 0.030 0.028 0.031 0.078 - 0.040 0.036 0.031

Image GT ours Co";’t':rmm DSAM SAM RISNet FSEL HiNet ~ MSCAFNet ZoomNet  SINetv2

Figure 4: Comparison of our SAM-TTT and other methods on different types of samples. (Better to zoom in.)

4.2 Experimental Setup with a batch size of 16. All input images are resized to 1024 X 1024
Implementation Details. SAM-TTT is implemented using Py- using bilinear interpolation, scaling them up or down as needed.
Torch, employing the Adam optimizer with a learning rate of 1¢~>. In addition, the input image data are truncated and normalized.
The model is trained for 290 epochs to achieve optimal performance, This ensures the pixel values are in the appropriate range while

taking around 24 hours to complete on an NVIDIA 3080TI GPU maintaining the relative distribution relationship of the data.
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Table 2: Comparison of Network Complexity. The parameters
in parentheses represent the training parameters.

Models Input size Param (M) Speed (fps)
SINetV2 352x352 26.98 (26.98) 50
DGNet 352x352 21.02 (21.02) 40
FSEL 416x416 67.13 (67.13) 31
SAM 1024x1024 91 (91) 2
SAM-TTT 1024x1024 96.32 (6.65) 3

Evaluation Metrics. Four metrics from COD10K [8] are adopted.
These four metrics are commonly used and well-established in
the field of COD: structure measure (S,) [6], weighted F-measure
(F¥) [28], mean enhanced-alignment measure (Eg) [7], and mean

absolute error (M). The structure measure quantifies the structural
similarity between the predicted results and the actual segmented
regions. The weighted F-measure combines precision and recall,
and weights them. The enhanced-alignment measure evaluates the
prediction result by comparing the alignment relationship between
the predicted value and the actual value. The mean absolute error is
a measure of the mean absolute error between the predicted value
and the true value.

4.3 Comparisons with Cutting-Edge Methods

Here, data from top-performing models over the past three years
is selected. To ensure a comprehensive comparison, both SAM-
based models and non-SAM methods are included. SAM-TTT is
compared with SAM [20] and other existing COD algorithms, such
as SINetV2 [8], ZoomNet [29], SegMaR [18], DGNet [16], MSCAF-
Net [25], HitNet [14], PRNet [15], RISNet [36], PNet [42], Camo-
Focus [19], FSEL [34], SAM-Adapter [4], DSAM [39], COMPro-
mpter [43]. The predictions of the competitors are disclosed by the
authors or generated by models retrained using open-source code.
The comparison results are presented in Table 1.

Efficiency analysis. Table 2 compares parameter counts and
inference speed. Although SAM-TTT has a large total parameter
size (96.32M), its trainable parameters are only 6.65M—about one-
tenth of FSEL’s. This keeps computational overhead low while
outperforming fully supervised methods under similar complexity.

Quantitative Results. The quantitative comparison results of
the proposed algorithm and the other 15 methods on the three
datasets are shown in Table 1. The 15 methods include both SAM-
based models and non-SAM-based models. No one method has a
completely significant advantage. Given the similar and competitive
accuracy, the top three scores are highlighted across 12 metrics on
three datasets. There exists some same score in top three score.
The identical top scores reflect the intense level of competition.
Among the top 2 scores, half of the differences are less than 0.3%.
The table highlights that among the top three scores across 12
metrics, 6 metrics have overlapping data. SAM-TTT secures top-
three positions in 8 out of 12 metrics, indicating a certain level
of advancement. On CAMO, SAM-TTT performs slightly worse),
likely due to enhanced generalization from SAM knowledge and
R-SAMPC perturbations at the expense of learning ability. The high
train-test ratio (1000:250) may further amplify this effect.
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Table 3: Ablation study results for each module of the proposed
SAM-TTT on COD datasets. P represents the average value of positive
metrics, while N represents the average value of negative metrics. T
indicates the higher the score the better and | indicates the lower
the score the better.

Dataset Metric M1 M2 M3* M3
Fﬁ ) 0.819 0.836 0.837 0.838
CAMO Sa T 0.853 0.864 0.866 0.868
E¢ T 0.919 0.929 0.933 0.935
M| 0.054 0.047 0.047 0.045
Fﬁ 7 0.779 0.799 0.808 0.805
COD10K Sa T 0.861 0.869 0.873 0.874

E¢ ) 0.933 0.937 0.941 0.942
M| 0.026 0.027 0.026 0.027

Fg T 0.840 0.833 0.839 0.837
NC4K Sa T 0.880 0.881 0.885 0.884
Egy ) 0.935 0.939 0.942 0.943
M| 0.036 0.031 0.030 0.031

P71 0.869 0.876 0.880 0.881

Average
& N| 0.0387 0.0350 0.0343 0.0343
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Figure 5: Visualization of ablation experiments. M1 denotes base-
line, COMPrompter. M2 denotes baseline + R-SAMPC. M3 denotes
baseline + R-SAMPC + TVM, which is SAM-TTT.

Qualitative Results. The visual comparisons of different meth-
ods on COD datasets are presented in Figure 4. The masks from
various perspectives are selected, including tiny objects (Rows 5
and 7), small objects (Rows 6 and 8), large objects (Rows 1 and
3), occluded objects (Rows 5 and 6), and objects with fine struc-
tures (Row 2 and 4). In Rows 2 and 4, the details of the objects are
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Image Mask Image Mask

Figure 6: Group-wise feature map, mask, image, and ground truth comparison based on ablation settings. M1 denotes baseline, COMPrompter.
M2 denotes baseline + R-SAMPC. M3 denotes baseline + R-SAMPC + TVM, which is SAM-TTT.

clearly shown through SAM-TTT. In contrast, the other methods
exhibit either over-segmentation or under-segmentation, leading to
blurred details. The illustrated results show that SAM-TTT demon-
strates a more detailed handling of fine features. Under occlusion,
the model requires more semantic knowledge. In Rows 6, 7, and
8, SAM-TTT effectively distinguishes occlusions from objects and
demonstrates more accurate segmentation. SAM-TTT provides a
more comprehensive semantic understanding when addressing oc-
clusion. A similar background can be beneficial for camouflaged
objects. In Row 4, the background is similar to the object, making
it challenging for many methods to detect the boundaries between
the target and the background. However, SAM-TTT demonstrates
superior discrimination in such cases, as shown in Row 4.

4.4 Ablation study

Ablation experiments are conducted to evaluate the effectiveness
of R-SAMPC and TVM. Specifically, R-SAMPC serves as a pre-
requisite for TVM. Four models are designed to demonstrate the
effectiveness of R-SAMPC and TVM. COMPrompter is chosen as
the baseline model, referred to as M1. M2 adds R-SAMPC and the
corresponding fusion phase to M1, while M3 incorporates TVM
and the corresponding fusion phase based on M2. In addition, M3x
replaces TTT with Mamba [10] to assess the effectiveness of TTT.

The quantitative results of different models in SAM-TTT are pro-
vided, shown in Table 3. In order to better observe the accuracy gap
between models, Table 3 is visualized as Figure 5. To observe the
effect of R-SAMPC and TVM, the feature visualizations of M1, M2,
M3 are compared with the final maks of this model, displayed in
Figure 6. Finally, to confirm the rationality of R-SAMPC, an ablation
experiment is performed on the rationality of R-SAMPC structure,
which is shown in Table 4.

Effectiveness of R-SAMPC. The effectiveness of R-SAMPC is
demonstrated by the gap between M1 and M2. As shown in Fig-
ure 5, M2 achieves an overall improvement compared to M1, with
particularly notable gains in the three positive metrics. The effec-
tiveness of R-SAMPC is analyzed based on average metrics. M2
achieves an average improvement of 0.6% in Sg, 1.0% in F%, 0.6%

in Ey across three datasets. The negative metric, M is reduced by
0.37%. Overall, M2 shows a 0.7% improvement in positive metrics
compared to M1. To clarify the role of R-SAMPC, it is analyzed from
the perspective of feature maps. Figure 6 lists a total of 8 groups of
feature maps and mask comparison maps. From the feature maps of
M1 in groups a, e, g and h, it is obvious that there are low response
areas caused by semantic errors inside the object in M1. Part of this
low response is reflected in the final prediction map being abnormal
hollowing inside the object (see M1’s masks of groups a, e, g and
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Table 4: Ablation study results for R-SAMPC. L0 denotes COMPrompter. L1 denotes baseline + a layer of convolutional combinations. L2
denotes two layers. L3 denotes three layers. L4 denotes four layers. L4 + € denotes L4 + channel scaling. P represents the average value of positive
metrics, while N represents the average value of negative metrics. The best data is marked bold, and the second best data is underlined. T
indicates the higher the score the better and | indicates the lower the score the better.

Setting CAMO

COD10K

NC4K Average

Sa T FE)T E¢T Fn T Ex1 Ml Sa T FE)T E¢T Fn 1 Ex1 Ml Sa T FE)T E¢T Fn 1 Ex1 Ml‘ P N

L0  0.853 0.819 0.919 0.843 0.931 0.054 0.861 0.779 0.933 0.806
L1 0.863 0.834 0.928 0.855 0.938 0.048 0.868 0.797 0.937 0.823
L2 0.861 0.831 0.927 0.852 0.937 0.049 0.868 0.797 0.937 0.821
L3 0.864 0.834 0.929 0.855 0.940 0.048 0.869 0.799 0.937 0.824
L4 0.864 0.835 0.930 0.855 0.94 0.047 0.869 0.799 0.938 0.823
L5 0.864 0.834 0.929 0.854 0.939 0.048 0.868 0.797 0.936 0.821
L4+€ 0.864 0.836 0.929 0.857 0.94 0.047 0.869 0.799 0.937 0.824

0.945 0.026 0.880 0.840 0.935 0.862 0.946 0.036| 0.8768 0.0387
0.948 0.027 0.880 0.831 0.938 0.853 0.948 0.031| 0.8827 0.0353
0.948 0.027 0.881 0.831 0.939 0.852 0.948 0.032| 0.8820 0.0360
0.948 0.027 0.881 0.833 0.939 0.854 0.949 0.031| 0.8837 0.0353
0.948 0.027 0.881 0.832 0.939 0.854 0.949 0.031| 0.8837 0.0350
0.946 0.027 0.881 0.832 0.938 0.852 0.948 0.031| 0.8826 0.0353
0.947 0.027 0.881 0.833 0.939 0.855 0.949 0.031|0.8839 0.0350

Table 5: Degradation of R-SAMPC for Adverse Parameters (x1073).
Roman numerals (e.g., I, IT) indicate different adverse parameters.
Larger absolute values are better.

Table 6: Enhancement of TVM for Advantageous Parameters
(x1073). Roman numerals indicate different parameters. Larger ab-
solute values are better.

Model-SAM I I I v \' Models-SAM I 1I 11 v \'

COMPrompter(M) -3.2 -0.9 -0.5 -0.3 -0.3 COMPrompter (M) 0.171 0.103  0.027  0.028 0.045
M+R-SAMPC -3.9 -2.2 -1.8 -1.1 -1.1 M+R-SAMPC 0.366  0.048 0.004 0.032  0.066
R-SAMPC Gain -0.7 -1.3 -1.3 -0.8 -0.8 M+R-SAMPC+TVM 0.465 0.073 0.027 0.054 0.070

Relative Gain -21.87% -144.44% -260.00% -266.67% -266.67%

h). M2 uses R-SAMPC, and this phenomenon is alleviated in the
feature map. The hollowing in the corresponding final prediction
map is also partially compensated (see M2 line of groups a, e, g and
h). Some hollow segments are close to the edge, so R-SAMPC can
also help to segment the edge (see group b, ¢, d and f). In addition,
the structural soundness of the R-SAMPC module is demonstrated
in Table 4. The module design gap of R-SAMPC is more subtle,
and six more comprehensive indicators are adopted. The metrics
added are mean F-measure (F,;) and max enhanced-alignment mea-
sure (Ex). The pioneering use of a single convolutional layer as
dropout gives the largest improvement, which is 0.59% in terms of
average positive index and 0.33% in terms of MAE. When the num-
ber of convolutional layers reaches four (L4), the index reaches its
peak. By adding the channel scaling, the average positive accuracy
increases by 0.02% compared with L4. Therefore, the rationality
and effectiveness of the R-SAMPC are demonstrated, confirming
its suitability. To validate the mitigation effect of R-SAMPC on ad-
verse parameters, we selected five parameters where COMPrompter
shows reduced degradation compared to SAM, and conducted a
quantitative comparison with the mitigation achieved by R-SAMPC.
Details are provided in Table 5.

Effectiveness of TVM. The effectiveness of TVM is demon-
strated by the gap between M3 and M2. It can be obtained from
Figure 5 that for the positive indicators, the improvement brought
by M3 is not as large as the improvement brought by M2 to M1.
However, the improvement of M3 also comprehensively exceeds all
the accuracy of M2. The effectiveness of TVM is analyzed based on
average metrics. M3 achieves an average improvement of 0.4% in
Sa, 0.4% in F/‘g", 0.5% in E¢ across three datasets. Specifically, the E¢

has been improved by 0.6%, 0.5%, and 0.4% in the three datasets. The

TVM Gain
Relative Gain

+0.099 +0.025 +0.023 +0.022 +0.004
+27.05% +52.08% +575.00% +68.75% +6.06%

comparison between M3 and M3+ demonstrates that TTT achieves
a higher positive metrics compared to Mamba. This indicates that
TTT has a stronger ability to focus on beneficial features. The role of
TVM is to compensate for the side effects introduced by R-SAMPC.
This side effect weakens the advantageous parameters. It can be
observed from the feature map of M1 and M2 that R-SAMPC makes
the overall response more balanced, though it introduces some erro-
neous responses. TVM extracts features on the basis of R-SAMPC to
correct the error response (see M3 line of d in Figure 6). To validate
the enhancement effect of TVM on advantageous parameters, we
selected five parameters where COMPrompter outperforms SAM,
and performed a quantitative comparison of the improvements
brought by TVM. Details are provided in Table 6.

5 Conclusion

The paper proposes SAM-TTT, a novel SAM-based network de-
signed to address the semantic deficiency that occurs when apply-
ing SAM to COD. SAM-TTT consists of R-SAMPC and TVM. It
offers a new approach for applying SAM to COD, widening the
Effect Distance between advantageous and adverse parameters. The
state-of-the-art performance of SAM-TTT is demonstrated over
15 cutting-edge methods across multiple datasets. SAM-TTT is a
groundbreaking step towards non-parametric weakening of adverse
parameters in SAM, and serves as a foundational step in introducing
Test-Time Training to computer vision. Improving the combination
of weakening adverse ones and emphasizing advantageous ones
remains a key area for further exploration. Broadly, this concept
could extend to other large model applications in downstream tasks.
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