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Abstract

This paper introduces a lightweight Semantic-guided Mutu-
ally Reinforcing network (SMR-Net) for the tasks of cross-
modal image fusion and salient object detection (SOD). The
core concept of SMR-Net is to leverage semantics for direct-
ing the mutual reinforcing between image fusion and SOD.
Specifically, a Progressive Cross-modal Interaction (PCI) im-
age fusion subnetwork is designed to exploit local interac-
tions via convolution operations and extend to global inter-
actions utilizing spatial and channel attention mechanisms.
Subsequently, a cross-modal Bit-Plane Slicing-based SOD
subnetwork (BPS) is developed by incorporating the fused
image as a third modality. This component employs bit-
plane slicing and the deformable convolution technique to
effectively extract irregular semantic information embedded
in fusion features. The refined semantic information then
guides the feature extraction process of the source modal-
ities in a reweighted fashion. By cascading these two sub-
networks, BPS leverages final semantic results to direct PCI
towards focusing more on semantic information. Ultimately,
through this semantic-guided mutual enhancement process,
SMR-Net excels in both producing high-quality fused im-
ages and achieving effective salient object detection. Our ex-
tensive experiments on image fusion and SOD tasks con-
vincingly demonstrate the superiority of our network over
existing state-of-the-art alternatives without introducing no-
ticeable computational costs. Compared to nearest competi-
tors, our method demonstrates a stronger generalization abil-
ity with 26% fewer parameters.

Introduction
Due to theoretical and hardware limitations, neither infrared
nor visible images alone can effectively and comprehen-
sively represent real imaging scenes (Li et al. 2023). Con-
ventional visible imaging devices excel at generating richly
textured images by recording reflected light from objects.
Nevertheless, they struggle to acquire information from crit-
ical targets in extreme conditions, such as nighttime, occlu-
sion, fog, and camouflage. In contrast, infrared imaging de-
vices generate images by detecting thermal radiation infor-
mation emitted by targets, emphasizing significant targets in
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Figure 1: Mean Average Precision (mAP) and Floating
Point Operations (FLOPs) of various algorithm on the
VT5000 (Tu et al. 2022) dataset.

extreme conditions but potentially neglecting environmental
texture details. The complementary characteristics of imag-
ing devices in the two modalities prompt researchers to fuse
visible and infrared images, creating an informative com-
posite image through image fusion technology (Xu, Yuan,
and Ma 2023). This composite image effectively highlights
significant targets while preserving environmental texture
details. Furthermore, image fusion technology plays a cru-
cial role in a wide array of high-level visual tasks, includ-
ing object detection (Xiao et al. 2024), object tracking (Liu
et al. 2023b), semantic segmentation (Liu et al. 2023c), and
pedestrian re-identification (Qi et al. 2024).

In the pursuit of advancing the application of image fu-
sion, a notable trend has emerged, with researchers high-
lighting the requirement to establish connections between
image fusion and high-level visual tasks (Sun et al. 2022;
Liu et al. 2023a; Hong, Zhang, and Ma 2024). Note that
these existing methods primarily concentrate on integrat-
ing semantic segmentation or object detection with image
fusion, in contrast, this paper focuses on the combination
of cross-modal image fusion and salient object detection
(SOD). Cross-modal SOD, representing a significant branch
of high-level visual tasks, is designed to detect the most vi-
sually distinctive objects or regions from different modal im-
ages. Thus, it would be highly beneficial to develop a more
integrated and optimized approach that effectively combines
cross-modal image fusion with SOD tasks.



This paper introduces a lightweight Semantic-guided Mu-
tually Reinforcing network (SMR-Net), to boost the effec-
tiveness of cross-modal image fusion and SOD by leverag-
ing complementary information from both source images.
Specifically, a specialized Progressive Cross-modal Inter-
action based image fusion subnetwork (PCI) is designed
to facilitate a stepwise interaction between the two source
modalities for image fusion. PCI incorporates two interac-
tion stages: the local interaction stage, utilizing convolution
operations for local interactions, and the global interaction
stage, leveraging attention mechanisms for broader contex-
tual interactions. In the global interaction stage, the spatial
attention and the channel attention are simultaneously ex-
ploited to promote interaction between the two modalities
across both spatial and channel dimensions. This stepwise
interaction process ensures a nuanced exchange of informa-
tion between the features of two source modalities, effec-
tively preserving complementary details while adeptly fil-
tering out redundant information.

Furthermore, a SOD subnetwork, named Bit-Plane Slic-
ing based SOD subnetwork (BPS), is introduced to uti-
lize the fused image as the third modality. This subnetwork
is designed to extract both semantic and high-frequency
information of salient objects from fused images through
bit-plane slicing, and capture irregular shapes from refined
fused features using deformable convolution for enhanced
SOD. Within BPS, a semantic and high-frequency extrac-
tion mechanism is strategically embedded behind each fea-
ture extraction layer to amplify semantic information in the
fusion features. The resultant high-semantic fusion features
are then assigned appropriate weights to the visible and in-
frared features through the sigmoid function, thereby aid-
ing in the extraction of semantic information from the two
source modalities. It is noteworthy to highlight that our BPS
outperforms existing approaches in both performance and
efficiency, as evidenced in Fig. 1.

Importantly, PCI serves as the link between these sub-
networks by furnishing high-saliency information to steer
the SOD task. Simultaneously, BPS constructs a SOD
loss to facilitate parameter updates of PCI through back-
propagation, prioritizing the emphasis on salient objects.
Leveraging these two subnetworks, SMR-NET excels in
generating high-quality fused images and accomplishing ef-
fective object detection, even in situations involving targets
with closely resembling colors.

To be concrete, our contributions are summarized as:

• A lightweight semantic-guided mutually reinforcing net-
work (SMR-Net) is introduced for cross-modal image fu-
sion and salient object detection. SMR-Net consists of
image fusion subnetwork (PCI) and SOD network (BPS).
PCI furnishes crucial high-saliency information to steer
the SOD task, while BPS establishes an SOD loss for up-
dating the parameters of PCI through back-propagation,
with a specific focus on enhancing the representation of
salient objects.

• A novel cross-modal image fusion network is designed to
seamlessly integrate source modalities through local and
global stages. This progressive interaction not only pre-

serves intricate details but also effectively filters redun-
dant information. In addition, a cross-modal SOD net-
work is introduced to adeptly extract irregular semantic
and high-frequency information through bit-plane slicing
and deformable convolution.

• Extensive experiments on publicly available datasets
demonstrate the superiority of our SMR-Net over the
existing image fusion and SOD algorithms in terms
of visual effect and quantitative metrics. Note that our
BPS demonstrates a noteworthy 6.25% enhancement
in the mean absolute error (MAE) metric when com-
pared to the state-of-the-art ResNet-based SOD meth-
ods for the VT5000 dataset, and achieves an impressive
16.67% improvement in the MAE metric for the VT821
dataset (Wang et al. 2018).

It is noteworthy that IRFS (Wang et al. 2023a) and our
SMR-Net both employ a cascade structure to facilitate mu-
tual optimisation between the image fusion network and the
SOD network. However, they differ significantly: 1) IRFS
directly reweights original features with fusion features, po-
tentially introducing irrelevant information. In contrast, our
method extracts semantic information from fusion features
via bit-plane slicing and deformable convolution, enhanc-
ing effectiveness. 2) IRFS relies on attention mechanisms
for modality interaction, while our approach solely utilizes
implicit semantic information in fused features, improving
performance and reducing time overhead. 3) IRFS employs
manual fusion strategies in the image fusion sub-network,
while our progressive cross-modal interaction module seam-
lessly integrates source modalities through local and global
stages. Thus, our framework provides superior and efficient
prediction results.

Related Work
Cross-Modal Image Fusion
Previous studies (Guan et al. 2023; Ma et al. 2022; Xu et al.
2022) concentrate on improving the visual quality and met-
rics of fused images, yielding promising results. Recently,
researchers have made significant strides in the development
of multi-task image fusion methods, which can be classified
into two categories: semantic-driven methods and seman-
tic feature compensation methods. Semantic-driven meth-
ods (Hong, Zhang, and Ma 2024; Liu et al. 2022) construct
the guidance function for advanced visual tasks within the
fusion network through cascading operations. The semantic
feature compensation methods (Liu et al. 2023a; Tang et al.
2023b) offer semantic guidance at the feature level by inte-
grating high-level semantic features into the fused features.
In addition, Liu et al. (Liu et al. 2023d) introduced a adaptive
adversarial training scheme to strengthen segmentation ro-
bustness in adversarial scenes. While existing methods pri-
marily concentrate on the integration of image fusion and
semantic segmentation, they allocate limited attention to the
combination of image fusion and salient object detection.

Cross-Modal Salient Object Detection
With thermal sensors readily available, thermal and visible
salient object detection (RGB-T SOD) has been extensively



studied in recent years (Wang et al. 2018; Gao et al. 2021).
RGB-T SOD methods leverage the complementary capabili-
ties of multimodal sensors to generate robust fusion features
across different modalities. Tu et al. (Tu et al. 2019) sug-
gested a collaborative graph learning algorithm and intro-
duced VT1000 dataset for RGB-T SOD, comprising 1000
aligned pairs of RGB and thermal images along with their
corresponding labels. Zhang et al. (Zhang et al. 2019) pro-
posed to capture semantic information and visual details
from RGB-T images at various depths through the fusion of
multi-level CNN features. MIDD (Tu et al. 2021) introduces
a multi-interactive dual-decoder for both high-level and low-
level feature fusion, aimed at generating robust and efficient
RGB-T features. Huo et al. (Huo et al. 2021) proposed a
context-guided stacking refinement network that progres-
sively refines features from top to bottom by leveraging the
interaction between semantic and spatial information.

In contrast, existing RGB-T SOD approaches have tra-
ditionally emphasized cross-modal interaction and feature-
level fusion, neglecting pixel-level fusion. In real-world
scenarios, the fused image can effectively highlight object
structures, crucial for distinguishing salient objects. Hence,
a logical strategy entails delving into the amalgamation of
image fusion and SOD tasks within a unified framework,
aiming to harness mutual benefits.

Method

The overall framework presented is depicted in Fig. 2. This
network is comprised of a cross-modal image fusion sub-
network (PCI) and a cross-modal salient object detection
subnetwork (BPS). These two tasks synergistically reinforce
each other through an alternating training method, thereby
achieving significantly improved overall performance.

Progressive Cross-Modal Interaction Image Fusion
Network

A Progressive Cross-modal Interaction image fusion net-
work (PCI) is proposed to optimize the extraction of com-
plementary information from two source modalities. PCI in-
corporates two key interaction stages: the local interaction
stage, where convolution operations enable localized inter-
actions, and the global interaction stage, which leverages at-
tention mechanisms for more expansive contextual interac-
tions.

We begin by detailing the local interaction stage. Initially,
for a given pair of visible image Ivi ∈ RH×W×3 and in-
frared image Iir ∈ RH×W×1, two fundamental convolution
blocks are applied as a feature extractor FE . This feature
extractor extracts coarse features from the source images:

{Fvi, Fir} = {FE(Ivi), FE(Iir)}, (1)

Next, we utilize convolution operations to capture com-
plementary cues between the two modalities. The enhanced
outputs, denoted as F̂vi and F̂ir through these convolution
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Figure 2: The overall architecture of SMR-Net.

operations, can be expressed as follows:

F ′
vi = Fvi ⊗ S(Conv(GAP (Cat(Fvi, Fir)))), (2)

F ′
ir = Fir ⊗ S(Conv(GAP (Cat(Fvi, Fir)))), (3)

F̂vi = F ′
vi ⊕ S(Conv(Cat(Fvi, Fir))), (4)

F̂ir = F ′
ir ⊕ S(Conv(Cat(Fvi, Fir))), (5)

where ⊕ refers to element-wise summation, Conv indi-
cates convolution operation. S and Cat represent the split
and concatenate operation, respectively. where ⊕ refers to
element-wise summation, Conv indicates convolution oper-
ation. S and Cat represent the split and concatenate opera-
tion, respectively.

Following the local interaction stage, we introduce the
global cross-modal interaction stage to alleviate redundancy
in both spatial and channel dimensions of the features ob-
tained from the local stage and accentuate essential compo-
nents. To elaborate, we concurrently feed the two modal-
ity features into spatial and channel attention mechanisms,
generating spatial and channel weights. Subsequently, these
weights are applied to reweight the original features from
the other branch through element-wise multiplication. The
resulting features are then separately subjected to element-
wise addition along both spatial and channel dimensions to
derive the final results. The feature filtering process is sum-
marized as:

Φ̂vi = (F̂vi ⊗ SA(F̂ir))⊕ (F̂vi ⊗ CA(F̂ir)), (6)

Φ̂ir = (F̂ir ⊗ SA(F̂vi))⊕ (F̂ir ⊗ CA(F̂vi)), (7)

where SA and CA respectively represent the spatial at-
tention and the channel attention. This sequential interac-
tion mechanism in PCI is designed to ensure a nuanced
exchange of information between the features of the two
source modalities.

Then, we obtain the fused map Ffu as:

Ffu = Φ̂vi ⊕ Φ̂ir. (8)

Finally, we adopt the dense block (Huang et al. 2017) and
convolution operation to reconstruct the fused image.
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Figure 3: The overall architecture of the proposed bit-plane slicing (BS) and deformable convolution (DC) module.

Cross-Modal Bit-Plane Slicing Based SOD
Network
We introduce a novel Cross-modal Bit-Plane Slicing-based
SOD network (BPS), integrating bit-plane slicing into the
multi-modal SOD task to enhance the exploitation of the po-
tential of fused image as a guide for SOD.

Specifically, BPS incorporates the fusion image as a third
modality to guide the multi-modal SOD network, leveraging
its ability to recognize salient objects and high contrast. Us-
ing a semantic encoder for cross-modal feature extraction,
we seamlessly integrate a bit-plane slicing module after each
feature extraction layer. This module effectively extracts se-
mantic information from the fusion features, capitalizing on
the high contrast differences inherent in these features. The
obtained features, enriched with semantic information, play
a crucial role in weighting the visible and infrared features.
This intricate process is visually depicted in Fig. 3. After
each feature extraction layer, the fusion features undergo a
convolution operation to condense them into a single chan-
nel. Subsequently, the single-channel fusion map is metic-
ulously split into four bit planes through bit-plane slicing.
This meticulous bit-slicing procedure can be succinctly sum-
marized as follows:

M i
fu = Conv(F i

fu), (9)

where F i
fu and M i

fu represent the fusion features and fu-
sion map at the i-th scale of the backbone network. For the
single-channel fusion map M i

fu, we employ Min-Max Nor-
malization to ensure data stability, scaling it to the range of
[0, 1]. The normalization process can be formulated as fol-
lows:

M i
norm =

M i
fu −M i

min

M i
max −M i

min

. (10)

Subsequently, we implement the bit-plane slicing algo-
rithm. The first bit-plane corresponds to the most signifi-
cant bit, capturing approximately half of M i

norm, while the
second bit-plane encompasses the remaining bits. This itera-
tive pattern continues until we obtain four distinct bit-planes.
This bit-slicing procedure can be summarized as follows:

bitil =

⌊
M i

norm mod 2−l+1

2−l

⌋
, l = 1, 2, 3, 4 (11)

where bitil indicates the l-th bit-plane. In this paper, we focus
specifically on 4-bit planes.

Furthermore, recognizing that each bit-plane contains dif-
ferent levels of semantic information, we concatenate the

four obtained bit-planes. These concatenated bit-planes are
then subjected to a convolution operation, serving to extract
features and restore the original channel count:

F̂ i
bs = Conv(Cat(biti1, bit

i
2, bit

i
3, bit

i
4)). (12)

In addition, by introducing deformable convolution (Dai
et al. 2017), we augment the spatial awareness of the original
convolution operation, empowering it to effectively capture
irregular shapes. To specifically target the extraction of ir-
regular salient objects, the deformable convolution is seam-
lessly integrated after the bit-plane slicing process. As de-
picted in Fig. 3, when presented with the input F̂ i

bs, the re-
sulting output is denoted as F̂ i

out. This deformable convolu-
tion operation is succinctly formulated as follows:

F̂ i
enh = Conv(ReLu(F̂ i

bs)), (13)

F̂ i
dc = (Conv(DC(F̂ i

enh)))), (14)

F̂ i
out = Conv(F̂ i

dc ⊗ F̂ i
enh)⊕ F̂ i

bs, (15)

where F̂ i
enh signifies the enhanced features, and F̂ i

dc repre-
sents the features obtained through deformable convolution
operations, with DC denoting deformable convolution.

Following this, the fusion features, enriched with
semantic-salient information, are employed to weight the
pixels of visible and thermal feature maps using a sigmoid
function. Through a continuous iteration of feature extrac-
tion and enhancement operations, we acquire refined fea-
tures at various scales. To effectively reconstruct and syn-
thesize the final salient object map from visible and thermal
features, we employ MSGD (Wang et al. 2023a) as our de-
coder module.

Loss Function
For the fusion task, we introduce the intensity loss Lint =

1
HW

∥∥∥If −max(Iir, Ivi)
∥∥∥
1

to retain the prominent saliency
and intensity distribution in the fused images, while the gra-
dient loss Ltexture =

1
HW

∥∥∥|∇If | −max(|∇Iir|, |∇Ivi|)
∥∥∥
1

is employed to preserve the texture details, where H and W
are the height and width of an image, respectively, ∥ · ∥1 de-
notes the l1−norm and max(·) stands for the element-wise
maximum selection. The total loss is defined as Lfusion =
Lint+αLtexture+Lsod, where α are hyperparameters em-
ployed to balance the weights of the loss values. In our pa-
per, we set α = 1. Notice that we extraordinarily introduce
LSOD to force the fused image to stand out the saliency-
related information.
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Figure 4: Qualitative comparison of our method with 9 state-of-the-art image fusion methods on typical 3 image pairs from the
TNO, RoadScene and MSRS datasets.

For the SOD task, we utilize the weighted binary cross-
entropy (wBCE) loss and weighted IoU (wIoU) as our SOD
loss functions. The corresponding loss function is defined as
Lsod = Lω

bce(M,GT )+Lω
iou(M,GT ), where M represents

the predicted saliency map, and GT indicates the ground
truth.

Experiments
Experimental Configurations
Datasets To accommodate the joint framework of im-
age fusion and salient object detection tasks, we select the
VT5000 (Tu et al. 2022) training set for training our net-
work. In addition, we also individually evaluate the gener-
alization capabilities of our SMR-Net in the tasks of image
fusion and SOD.

In the image fusion sub-task, we verify the general-
ization ability of our PCI subnetwork on the TNO (Toet
2017) (15 pairs), RoadScene (Xu et al. 2020) (40 pairs) and
MSRS (Tang et al. 2022) (80 pairs) datasets, comparing it
against the the state-of-the-art image fusion algorithm as
follow: FuisonGAN (Ma et al. 2019), PMGI (Zhang et al.
2020), GANMcC (Ma et al. 2020), SDNet (Zhang and Ma
2021), STDFusionNet (Ma et al. 2021), CUFD (Xu et al.
2022), TarDAL (Liu et al. 2022), DIVFusion (Tang et al.
2023a) and IRFS (Wang et al. 2023a).

In the SOD sub-task, we verify the generalization ability
of our BPS subnetwork on the VT5000 test set (2, 500 pairs),
VT1000 (Tu et al. 2019) (1, 000 pairs), and VT821 (Wang
et al. 2018) (821 pairs) datasets, comparing it with the
state-of-the-art SOD methods, including MTMR (Wang
et al. 2018), SGDL (Tu et al. 2019), ADF (Zhang et al.
2019), MIDD (Tu et al. 2021), APNet (Zhou et al. 2021),
CSRNet (Huo et al. 2021), OSRNet (Huo et al. 2022),
TAGFNet (Wang et al. 2023b), IRFS (Wang et al. 2023a)
and LAFB (Wang et al. 2024).

Evaluation Metrics In the image fusion sub-task, we se-
lect five common evaluation metrics to quantify the eval-
uation, including peak signal-to-noise ratio (PSNR), mean
squared error (MSE), visual information fidelity (VIF) and
quality with no reference based on the fusion of simi-
larity and information (Qabf). In the SOD sub-task, we
also adopt common metrics to evaluate the performance
of saliency map, including S-measure (Tu et al. 2019), F-

measure (Achanta et al. 2009), E-measure (Fan et al. 2018)
and MAE (Perazzi et al. 2012).

Implementation Details We alternately train our image
fusion subnetwork (PCI) and SOD subnetwork (BPS), set-
ting the total number of training epochs to 10 and the batch
size to 4. Both PCI and BPS use the Adam optimizer to up-
date the training parameters. Additionally, the siamese en-
coder of BPS relies on the pre-trained ResNet-34 (He et al.
2016) backbone. It is worth mentioning that, for data in the
RGB color space, we convert it to the YCbCr color space to
process color information. All experiments are conducted on
the NVIDIA GeForce RTX 3090 GPU with 24GB memory
and 3.20 GHz Intel(R).

Cross-Modal Image Fusion
The visual results in the TNO, RoadScene and MSRS
datasets are displayed in Fig. 4. To visualize the superior
comparison of the fusion images, we zoom in on an area
with salient object in the red box and an area with rich tex-
ture details in the green box. As can be seen in the first
row that FusionGAN, GANMcC, PMGI, SDNet, CUFD and
TarDAL fail to reflect the texture details of the branch from
the visible image. DIVFusion and IRFS introduce higher ar-
tifacts. From the second row, we can see that FusionGAN,
GANMcC, STDFusionNet, CUFD, DIVFusion and IRFS all
badly lose the texture of the car logo due to the effect of ex-
posure from the visible image. From the third row, it can
be noted that STDFusion, CUFD, DIVFusion and IRFS are
all contaminated by the exposure from visible image, and
present unrealistic scenarios. Only our method successfully
highlights salient objects from infrared images as well as
preserves texture details from visible images. Further, we
present quantitative results in Table 1. In the TNO dataset,
our method achieves the best performance on PSNR, MSE
and Qabf metrics, and the second best performance on VIF
metrics, demonstrating that our fusion results closely re-
semble the source images and contain more saliency infor-
mation. In the RoadScene dataset, PCI gets the best per-
formance on VIF and Qabf metrics, and second-best per-
formance on PSNR and MSE metrics, indicating that our
method retains more saliency information and edge details
from the source images. In the MSRS dataset, our method
obtains the best performance on all metrics, implying that
our fused images retain high contrast and texture details
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Figure 5: Qualitative comparison of our method with 10 state-of-the-art RGB-T SOD methods on typical 6 image pairs from
the VT5000, VT1000 and VT821 datasets.

Datasets Metric FusionGAN PMGI GANMcC SDNet CUFD STDFusionNet TarDAL DIVFusion IRFS PCI

TNO

PSNR↑ 62.332 63.779 63.696 65.425 64.603 63.597 60.434 61.379 66.149 66.728
MSE ↓ 0.051 0.033 0.038 0.024 0.028 0.037 0.067 0.059 0.020 0.020
VIF ↑ 0.403 0.654 0.534 0.604 0.641 0.838 0.394 0.627 0.632 0.743
Qabf ↑ 0.221 0.413 0.298 0.418 0.399 0.473 0.181 0.326 0.390 0.547

RoadScene

PSNR↑ 61.572 63.567 62.849 65.382 64.492 60.839 60.785 63.997 67.093 65.953
MSE ↓ 0.047 0.032 0.036 0.021 0.025 0.055 0.056 0.028 0.014 0.018
VIF ↑ 0.375 0.631 0.503 0.639 0.627 0.654 0.456 0.582 0.610 0.662
Qabf ↑ 0.247 0.485 0.358 0.541 0.470 0.382 0.264 0.318 0.440 0.583

MSRS

PSNR↑ 66.484 59.645 67.109 66.612 65.025 66.417 65.173 55.970 66.512 67.730
MSE ↓ 0.016 0.076 0.015 0.015 0.022 0.016 0.024 0.169 0.016 0.012
VIF ↑ 0.477 0.767 0.707 0.529 0.587 0.529 0.141 0.821 0.797 0.837
Qabf ↑ 0.163 0.384 0.373 0.366 0.401 0.423 0.116 0.273 0.467 0.583

Table 1: PSNR, MSE, VIF and Qabf metrics comparisons with different image fusion models on TNO, RoadScene and MSRS
datasets (unit: RED indicates the best result and BLUE represents the second best result).

while providing good visual effects.

Cross-Modal Salient Object Detection
The qualitative comparisons on the VT5000, VT1000 and
VT821 datasets are shown in Fig. 5. As we can see, our
method achieves better detection performance than other
methods in some challenging cases: complex object (1-th
and 3-th rows), complex scene (2-th row), small object (4-th
row) and multiple objects (5-th and 6-th rows). The excel-
lent visual examples indicate that our approach can better
locate salient objects and produce more accurate saliency
maps. Additionally, the quantitative results on the VT5000,
VT1000 and VT821 datasets are exhibited in Table 1. As can
be clearly found, our BPS achieves the best performance on
all metrics in the VT5000 and VT821 datasets. In VT5000,
our method performs 44.4% better in the F-measure and
has 73.7% lower MAE than MTMR. In VT821, our ap-
proach outperforms the advanced ADF, with improvements
of 17.7% and 61.0% on F-measure and MAE metrics, re-
spectively. In VT1000, our algorithm merely performs 0.2%
lower than the better on the S-measure and F-measure met-
rics and 5.2% higher than the better on the MAE metric.

Further, we introduce Precision-Recall (PR) and F-
measure curves to present a comprehensive comparison of
the model performance, as shown in Fig. 6. From these
curves, we can observe that our algorithm consistently out-
performs all other models under different thresholds, indi-
cating that the proposed method is more robust than other
models.

Ablation Study
BS and DC blocks To verify the necessity of BS block
and DC block in the BPS subnetwork, we successively re-
move BS and DC blocks, and the visual comparison are dis-
played in Fig. 7. Clearly, the version W/O BS loses abundant
edge and texture details of the salient object. Meanwhile, the
version W/O DC retains too much meaningless information.
Only our fully model has higher sensitivity to salient object
detection. Similarly, the quantitative analysis are presented
in Table 3. Obviously, using BS block brings an improve-
ment of 20.1% in the F-measure metric, and using the DC
block brings an improvement of 54.5% in MAE score on the
VT5000 dataset. When combining the two blocks, the per-
formance of the four metrics gets the best, which brings an



Datasets Metric MTMR SGDL ADF MIDD APNet CSRNet OSRNet TAGFNet IRFS LAFB BPS

VT821

Sα ↑ .725 .764 .810 .871 .867 .885 .875 .880 .863 .884 .888
Fβ ↑ .662 .731 .717 .805 .816 .831 .814 .822 .813 .843 .844
Eϵ ↑ .815 .846 .843 .895 .907 .909 .896 .905 .901 .915 .920

MAE↓ .108 .085 .077 .045 .034 .038 .043 .035 .036 .034 .030

VT1000

Sα ↑ .706 .787 .910 .907 .921 .918 .926 .926 .924 .932 .924
Fβ ↑ .715 .764 .847 .871 .883 .877 .892 .890 .901 .905 .899
Eϵ ↑ .836 .856 .921 .928 .938 .925 .935 .935 .943 .945 .945

MAE↓ .119 .090 .034 .029 .021 .024 .022 .021 .019 .018 .020

VT5000

Sα ↑ .680 .750 .864 .856 .876 .868 .875 .884 .883 .893 .891
Fβ ↑ .595 .672 .778 .789 .820 .811 .824 .827 .851 .857 .859
Eϵ ↑ .795 .824 .891 .891 .938 .905 .908 .913 .928 .931 .935

MAE↓ .114 .089 .048 .046 .035 .042 .040 .036 .032 .030 .030

Table 2: S-measure, adaptive F-measure, adaptive E-measure and MAE metrics comparisons with 10 state-of-the-art RGB-T
SOD models on VT5000, VT1000 and VT821 datasets.
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Figure 6: Comparison of PR curves (Top) and F-measure
curves (Down) across various RGB-T SOD methods.

W/O BS W/O DC Ours GTRGB Thermal

Figure 7: Visual comparison for the proposed BS and DC
blocks on VT5000 dataset

improvement of 21.3% in the F-measure metric. This sub-
stantial increase further reinforces the necessity of employ-
ing two blocks.

Analysis of BS with Different Layers The proposed BS
module utilizes bit-plane slicing to extract high-frequency
and semantic information from fused images. This section
concentrates on the selection of layers for bit-plane. As
shown in Table 4, Bit4-only performs best on all metrics,
followed by the case where all four layers are utilized.

# BS DC
VT5000

Sα ↑ Fβ ↑ Eξ ↑ MAE ↓
0 0.810 0.708 0.833 0.066
1 ✓ 0.888 0.848 0.931 0.031
2 ✓ 0.886 0.847 0.928 0.032
3 ✓ ✓ 0.891 0.859 0.935 0.030

Table 3: Ablation studies of with and without the proposed
BS and DC modules.

# Bit1 Bit2 Bit3 Bit4
VT5000

Sα ↑ Fβ ↑ Eξ ↑ MAE ↓
0 0.886 0.847 0.928 0.032
1 ✓ 0.888 0.851 0.932 0.030
2 ✓ 0.889 0.855 0.932 0.030
3 ✓ 0.888 0.851 0.929 0.031
4 ✓ 0.891 0.859 0.935 0.030
5 ✓ ✓ 0.888 0.853 0.933 0.030
6 ✓ ✓ ✓ 0.889 0.855 0.933 0.030
7 ✓ ✓ ✓ ✓ 0.889 0.857 0.933 0.030

Table 4: Ablation studies of the selection of different bit-
plane. The bit4-only configuration achieves the best perfor-
mance, indicating higher semantic consistency.

Conclusion

The paper presents SMR-Net, a lightweight network for
cross-modal image fusion and SOD tasks, consisting of the
fusion subnetwork (PCI) and the SOD subnetwork (BPS).
The PCI enhances cross-modal interactions using convolu-
tion and attention mechanisms, while the BPS employs bit-
plane slicing and deformable convolution for saliency ex-
traction. The interconnected subnetworks allow PCI to guide
SOD and BPS to refine PCI through back-propagation, fo-
cusing on salient objects. SMR-Net excels in generating
high-quality fused images and effectively detecting objects
without significant computational costs, as demonstrated by
extensive experiments that show its superiority over existing
algorithms in both qualitative and quantitative metrics.
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